ABSTRACT Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR.
Abstract Staphylococcus aureus is an important human pathogen and commensal, where the human nose is the predominant reservoir. To better understand its behavior in this environmental niche, RNA was extracted from the anterior nares of three documented S. aureus carriers and the metatranscriptome analyzed by RNAseq. In addition, the in vivo transcriptomes were compared to previously published transcriptomes of two in vitro grown S. aureus strains. None of the in vitro conditions, even growth in medium resembling the anterior nares environment, mimicked in vivo conditions. Survival in the nose was strongly controlled by the limitation of iron and evident by the expression of iron acquisition systems. S. aureus populations in different individuals clearly experience different environmental stresses, which they attempt to overcome by the expression of compatible solute biosynthetic pathways, changes in their cell wall composition and synthesis of general stress proteins. Moreover, the expression of adhesins was also important for colonization of the anterior nares. However, different S. aureus strains also showed different in vivo behavior. The assessment of general in vivo expression patterns and commonalities between different S. aureus strains will in the future result in new knowledge based strategies for controlling colonization.
In order to determine the influence of geographical distance, depth, and Longhurstian province on bacterial community composition and compare it with the composition of photosynthetic micro-eukaryote communities, 382 samples from a depth-resolved latitudinal transect (51°S-47°N) from the epipelagic zone of the Atlantic ocean were analyzed by Illumina amplicon sequencing. In the upper 100 m of the ocean, community similarity decreased toward the equator for 6000 km, but subsequently increased again, reaching similarity values of 40-60% for samples that were separated by ~12,000 km, resulting in a U-shaped distance-decay curve. We conclude that adaptation to local conditions can override the linear distance-decay relationship in the upper epipelagial of the Atlantic Ocean which is apparently not restrained by barriers to dispersal, since the same taxa were shared between the most distant communities. The six Longhurstian provinces covered by the transect were comprised of distinct microbial communities; ~30% of variation in community composition could be explained by province. Bacterial communities belonging to the deeper layer of the epipelagic zone (140-200 m) lacked a distance-decay relationship altogether and showed little provincialism. Interestingly, those biogeographical patterns were consistently found for bacteria from three different size fractions of the plankton with different taxonomic composition, indicating conserved underlying mechanisms. Analysis of the chloroplast 16S rRNA gene sequences revealed that phytoplankton composition was strongly correlated with both free-living and particle associated bacterial community composition (R between 0.51 and 0.62, p < 0.002). The data show that biogeographical patterns commonly found in macroecology do not hold for marine bacterioplankton, most likely because dispersal and evolution occur at drastically different rates in bacteria.
This study evaluated the microbial viability of fish gut microbiota in both digesta (faecal) and mucosal samples using a modified propidium monoazide (PMA) protocol, followed by 16S ribosomal RNA (rRNA) gene sequencing.Digesta and gut mucosal samples from farmed yellowtail kingfish (Seriola lalandi) were collected and a modified PMA treatment was applied prior to DNA extraction to differentiate both active and nonviable microbial cells in the samples. All samples were then sequenced using a standard 16S rRNA approach. The digesta and mucosal samples contained significantly different bacterial communities, with a higher diversity observed in digesta samples. In addition, PMA treatment significantly reduced the microbial diversity and richness of digesta and mucosal samples and depleted bacterial constituents typically considered to be important within fish, such as Lactobacillales and Clostridales taxa.These findings suggest that important bacterial members may not be active in the fish gut microbiota. In particular, several beneficial lactic acid bacteria (LAB) were identified as nonviable bacterial cells, potentially influencing the functional potential of the fish microbiota.Standardizing the methods for characterizing the fish microbiota are paramount in order to compare studies. In this study, we showed that both sample type and PMA treatment influence the bacterial communities found in the fish gut microbiota. Our findings also suggest that several microbes previously described in the fish gut may not be active constituents. As a result, these factors should be considered in future studies to better evaluate the active bacterial communities associated with the host.
The capacity to reliably identify fish eggs is critical in the application of the daily egg production method (DEPM) to estimate biomass of commercially important species. This application has largely been confined to species that have easily identifiable eggs. Various molecular strategies have been used to extend the DEPM to a broader range of species, with recent approaches like in situ hybridization (ISH) that preserves the integrity of whole eggs, embryos or larvae recommended as a suitable alternative over destructive procedures like PCR. Here, we designed and validated an ISH approach for the identification of whole eggs and larvae from Snapper (Chrysophrys auratus) from environmental samples using the mitochondrial 16S rRNA gene as a target for specific horseradish peroxidase (HRP)-conjugated oligonucleotide probes. This colorimetric assay allowed the highly specific detection of positive hybridization signals from intact C. auratus larvae and eggs from mixed-species samples comprising closely related taxa. Furthermore, evaluation of whole eggs across a range of developmental stages revealed the sensitivity of the approach for discerning early stages, thereby guiding staging and the identification of otherwise indistinguishable eggs from environmental samples. This approach represents a major advance from current molecular-based strategies as it is nondestructive and allows for the simultaneous identification and staging of fish eggs (and larvae). The resultant 100% egg identification certainty we have achieved allows the DEPM to be applied to a wider array of fish species and is particularly applicable to species in areas where morphologically similar eggs are being spawned at the same time.
Abstract Background The use of antibiotics in aquaculture is a common infection treatment and is increasing in some sectors and jurisdictions. While antibiotic treatment can negatively shift gut bacterial communities, recovery and examination of these communities in fish of commercial importance is not well documented. Examining the impacts of antibiotics on farmed fish microbiota is fundamental for improving our understanding and management of healthy farmed fish. This work assessed yellowtail kingfish ( Seriola lalandi ) skin and gut bacterial communities after an oral antibiotic combination therapy in poor performing fish that displayed signs of enteritis over an 18-day period. In an attempt to promote improved bacterial re-establishment after antibiotic treatment, faecal microbiota transplantation (FMT) was also administered via gavage or in the surrounding seawater, and its affect was evaluated over 15 days post-delivery. Results Antibiotic treatment greatly perturbed the global gut bacterial communities of poor-performing fish – an effect that lasted for up to 18 days post treatment. This perturbation was marked by a significant decrease in species diversity and evenness, as well as a concomitant increase in particular taxa like an uncultured Mycoplasmataceae sp., which persisted and dominated antibiotic-treated fish for the entire 18-day period. The skin-associated bacterial communities were also perturbed by the antibiotic treatment, notably within the first 3 days; however, this was unlike the gut, as skin microbiota appeared to shift towards a more ‘normal’ (though disparate) state after 5 days post antibiotic treatment. FMT was only able to modulate the impacts of antibiotics in some individuals for a short time period, as the magnitude of change varied substantially between individuals. Some fish maintained certain transplanted gut taxa (i.e. present in the FMT inoculum; namely various Aliivibrio related ASVs) at Day 2 post FMT, although these were lost by Day 8 post FMT. Conclusion As we observed notable, prolonged perturbations induced by antibiotics on the gut bacterial assemblages, further work is required to better understand the processes/dynamics of their re-establishment following antibiotic exposure. In this regard, procedures like FMT represent a novel approach for promoting improved microbial recovery, although their efficacy and the factors that support their success requires further investigation.
The anterior nares are an important reservoir for opportunistic pathogens and commensal microorganisms. A barcoded Illumina paired-end sequencing method targeting the 16S ribosomal RNA V1-2 hypervariable region was developed to compare the bacterial diversity of the anterior nares across distinct human populations (volunteers from Germany vs a Babongo Pygmy tribe, Africa). Of the 251 phylotypes detected, 231 could be classified to the genus level and 109 to the species level, including the unambiguous identification of the ubiquitous Staphylococcus aureus and Moraxella catarrhalis. The global bacterial community of both adult populations revealed that they shared 85% of the phylotypes, suggesting that our global bacterial communities have likely been with us for thousands of years. Of the 34 phylotypes unique to the non-westernized population, most were related to members within the suborder Micrococcineae. There was an even more overwelming distinction between children and adults of the same population, suggesting a progression of a childhood community of high-diversity comprising species of Moraxellaceae and Streptococcaceae to an adult community of lower diversity comprising species of Propionibacteriaceae, Clostridiales Incertae Sedis XI, Corynebacteriaceae and Staphylococcaceae. Thus, age was a stronger factor for accounting for differing bacterial assemblages than the origin of the human population sampled.