The present study explores the processability and properties of poly(furfuryl alcohol) (PFA)-based composites and draws comparisons with the industry-standard epoxy resin matrices used in printed circuit board applications. A poly(furfuryl alcohol)-based fiberglass prepreg was used to manufacture composite cores laminated with copper foil, which were then integrated in situ into printed circuit board prototypes through industry-typical manufacturing and assembly processes. Both copper cores and printed boards were tested to characterize the electrical properties and overall quality of the prototypes. The fabrication of the copper cores and manufacturing methods of the printed boards are described, alongside the results from the characterization of the cores and the testing of the printed boards. The inherent advantages and disadvantages of the material are highlighted, and areas of improvement for the processability of the material and reliability of the technology are discussed.
Major cloud providers have stated public plans to lower their carbon emissions. Historically, this has meant focusing on emissions from producing the electricity consumed by datacenters. While work and challenges remain on this avenue, research and industry are actively working on the next step of reducing carbon embedded in servers and racks. At a high level, a promising direction to reduce embodied carbon is to avoid emissions from new manufacturing, which often requires using existing components, devices, and buildings for longer. However, much of the data around carbon breakdowns and reduction opportunities remains silo-ed, leading to speculations and assumptions - both internally and externally - around the opportunities to reduce datacenter carbon intensity. We aim to clarify some of the misconceptions we have encountered.
Abstract Engineering curricula have begun to provide opportunities for inclusive and diverse learning. The National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) Program: Global Traineeship in Sustainable Electronics” is an example of one such initiative. The program brought together s an interdisciplinary group of students to study the environmental, economic, and societal aspects of the global electronics lifecycle. The IGERT was designed as a two-year training program with a two-week international trip to India as a key event in the educational experience with an international experience trip in India. There were three cohorts altogether, but the dynamics of each group were substantially different. In the final IGERT cohort, for instance, the students demonstrated a notably high degree of self-motivation and group cohesion. This third cohort actively sought additional experiences outside the original planned courses and trips. Assuming the final IGERT cohort exhibited a higher level of motivation, the aim of this work is to glean insight into what and how specific curriculum design may promote the learning experiences in which students take initiative beyond the scope of the program, especially in interdisciplinary fields. We identified four factors that might influence the experiential learning within a framework incorporating the self-determination theory (SDT) and the expectancyvalue model: the factors considered are value, relatedness, competence, and autonomy. Utilizing a non-experimental approach, we surveyed the last cohort to identify when and why they felt or failed to feel motivated during the program and what curriculum modules were most valuable for their learning experiences. We found that all four factors (value, relatedness, competence, and autonomy) grew throughout the program. In particular, the international workshop in India marks the point when students started to see shared values with their peers; the self-organized seminar course marks the point when students developed the feeling of autonomy. The most valuable aspects of the program were ranked to be international field trips, peers, and team projects. For the latter two aspects, defined in this work as the group dynamic, the most important factors for building a sense of community are group pro-activity, cohesiveness, and attitude.
In the absence of shorter term disinfectant byproducts (DBPs) data on regulated Trihalomethanes (THMs) and Haloacetic acids (HAAs), epidemiologists and risk assessors have used long-term annual compliance (LRAA) or quarterly (QA) data to evaluate the association between DBP exposure and adverse birth outcomes, which resulted in inconclusive findings. Therefore, we evaluated the reliability of using long-term LRAA and QA data as an indirect measure for short-term exposure. Short-term residential tap water samples were collected in peak DBP months (May–August) in a community water system with five separate treatment stations and were sourced from surface or groundwater. Samples were analyzed for THMs and HAAs per the EPA (U.S. Environmental Protection Agency) standard methods (524.2 and 552.2). The measured levels of total THMs and HAAs were compared temporally and spatially with LRAA and QA data, which showed significant differences (p < 0.05). Most samples from surface water stations showed higher levels than LRAA or QA. Significant numbers of samples in surface water stations exceeded regulatory permissible limits: 27% had excessive THMs and 35% had excessive HAAs. Trichloromethane, trichloroacetic acid, and dichloroacetic acid were the major drivers of variability. This study suggests that LRAA and QA data are not good proxies of short-term exposure. Further investigation is needed to determine if other drinking water systems show consistent findings for improved regulation.
An evaluation of the steady-state dispersion model AERMOD was conducted to determine its accuracy at predicting hourly ground-level concentrations of sulfur dioxide (SO2) by comparing model-predicted concentrations to a full year of monitored SO2 data. The two study sites are comprised of three coal-fired electrical generating units (EGUs) located in southwest Indiana. The sites are characterized by tall, buoyant stacks,flat terrain, multiple SO2 monitors, and relatively isolated locations. AERMOD v12060 and AERMOD v12345 with BETA options were evaluated at each study site. For the six monitor-receptor pairs evaluated, AERMOD showed generally good agreement with monitor values for the hourly 99th percentile SO2 design value, with design value ratios that ranged from 0.92 to 1.99. AERMOD was within acceptable performance limits for the Robust Highest Concentration (RHC) statistic (RHC ratios ranged from 0.54 to 1.71) at all six monitors. Analysis of the top 5% of hourly concentrations at the six monitor-receptor sites, paired in time and space, indicated poor model performance in the upper concentration range. The amount of hourly model predicted data that was within a factor of 2 of observations at these higher concentrations ranged from 14 to 43% over the six sites. Analysis of subsets of data showed consistent overprediction during low wind speed and unstable meteorological conditions, and underprediction during stable, low wind conditions. Hourly paired comparisons represent a stringent measure of model performance; however given the potential for application of hourly model predictions to the SO2 NAAQS design value, this may be appropriate. At these two sites, AERMOD v12345 BETA options do not improve model performance.A regulatory evaluation of AERMOD utilizing quantile-quantile (Q-Q) plots, the RHC statistic, and 99th percentile design value concentrations indicates that model performance is acceptable according to widely accepted regulatory performance limits. However, a scientific evaluation examining hourly paired monitor and model values at concentrations of interest indicates overprediction and underprediction bias that is outside of acceptable model performance measures. Overprediction of 1-hr SO2 concentrations by AERMOD presents major ramifications for state and local permitting authorities when establishing emission limits.
Electronics are integral to modern life; however, at their end-of-life these devices produce environmentally hazardous electronic waste (e-waste). Recycling the ubiquitous printed circuit boards (PCBs) that make up a substantial mass and volume fraction of e-waste is challenging due to their use of irreversibly cured thermoset epoxies. We present a PCB formulation using transesterification vitrimers (vPCBs), and an end-to-end fabrication process compatible with standard manufacturing ecosystems. We create functional prototypes of IoT devices transmitting 2.4 GHz radio signals on vPCBs with electrical and mechanical properties meeting industry standards. Fractures and holes in vPCBs can be repaired while retaining comparable performance over more than four repair cycles. We further demonstrate non-destructive decomposition of transesterification vitrimer composites with solid inclusions and metal attachments by polymer swelling with small molecule solvents. We hypothesize that unlike traditional solvolysis recycling, swelling does not degrade the materials. Through dynamic mechanical analysis we find negligible catalyst loss, minimal changes in storage modulus, and equivalent polymer backbone composition across multiple recycling cycles. We achieve 98% polymer recovery, 100% fiber recovery, and 91% solvent recovery which we reuse to create new vPCBs without degraded performance. Our cradle-to-cradle life-cycle assessment shows substantial environmental impact reduction over conventional PCBs in 11 categories.
In the absence of shorter term disinfectant byproducts (DBPs) data on regulated Trihalomethanes (THMs) and Haloacetic acids (HAAs), epidemiologists and risk assessors have used long-term annual compliance (LRAA) or quarterly (QA) data to evaluate the association between DBP exposure and adverse birth outcomes, which resulted in inconclusive findings. Therefore, we evaluated the reliability of using long-term LRAA and QA data as an indirect measure for short-term exposure. Short-term residential tap water samples were collected in peak DBP months (May-August) in a community water system with five separate treatment stations and were sourced from surface or groundwater. Samples were analyzed for THMs and HAAs per the EPA (U.S. Environmental Protection Agency) standard methods (524.2 and 552.2). The measured levels of total THMs and HAAs were compared temporally and spatially with LRAA and QA data, which showed significant differences (p < 0.05). Most samples from surface water stations showed higher levels than LRAA or QA. Significant numbers of samples in surface water stations exceeded regulatory permissible limits: 27% had excessive THMs and 35% had excessive HAAs. Trichloromethane, trichloroacetic acid, and dichloroacetic acid were the major drivers of variability. This study suggests that LRAA and QA data are not good proxies of short-term exposure. Further investigation is needed to determine if other drinking water systems show consistent findings for improved regulation.