The relevance of the acyl homoserine lactone (acyl-HSL) quorum signals N-3-oxododecanoyl-homoserine lactone (3OC12HSL) and N-butanoyl-homoserine lactone to the biology and virulence of Pseudomonas aeruginosa is well investigated. Previously, P. aeruginosa was shown to degrade long-chain, but not short-chain, acyl-HSLs as sole carbon and energy sources (J. J. Huang, J.-I. Han, L.-H. Zhang, and J. R. Leadbetter, Appl. Environ. Microbiol. 69:5941-5949, 2003). A gene encoding an enzyme with acyl-HSL acylase activity, pvdQ (PA2385), was identified, but it was not required for acyl-HSL utilization. This indicated that P. aeruginosa encodes another acyl-HSL acylase, which we identify here. A comparison of total cell proteins of cultures grown with long-acyl acyl-HSLs versus other substrates implicated the involvement of a homolog of PvdQ, the product of gene PA1032, for which we propose the name QuiP. Transposon mutants of quiP were defective for growth when P. aeruginosa was cultured in medium containing decanoyl-HSL as a sole carbon and energy source. Complementation with a functional copy of quiP rescued this growth defect. When P. aeruginosa was grown in buffered lysogeny broth, constitutive expression of QuiP in P. aeruginosa led to decreased accumulations of the quorum signal 3OC12HSL, relative to the wild type. Heterologous expression of QuiP was sufficient to confer long-chain acyl-HSL acylase activity upon Escherichia coli. Examination of gene expression patterns during acyl-HSL-dependent growth of P. aeruginosa further supported the involvement of quiP in signal decay and revealed other genes also possibly involved. It is not yet known under which "natural" conditions quiP is expressed or how P. aeruginosa balances the expression of its quorum-sensing systems with the expression of its acyl-HSL acylase activities.
Spirochetes from termite hindguts and freshwater sediments possessed homologs of a nitrogenase gene ( nifH ) and exhibited nitrogenase activity, a previously unrecognized metabolic capability in spirochetes. Fixation of 15-dinitrogen was demonstrated with termite gut Treponema ZAS-9 and free-living Spirochaeta aurantia . Homologs of nifH were also present in human oral and bovine ruminal treponemes. Results implicate spirochetes in the nitrogen nutrition of termites, whose food is typically low in nitrogen, and in global nitrogen cycling. These results also proffer spirochetes as a likely origin of certain nifH s observed in termite guts and other environments that were not previously attributable to known microbes.
Summary Members of the bacterial phylum Spirochaetes are generally helical cells propelled by periplasmic flagella. The spirochete Treponema primitia is interesting because of its mutualistic role in the termite gut, where it is believed to cooperate with protozoa that break down cellulose and produce H 2 as a by‐product. Here we report the ultrastructure of T. primitia as obtained by electron cryotomography of intact, frozen‐hydrated cells. Several previously unrecognized external structures were revealed, including bowl‐like objects decorating the outer membrane, arcades of hook‐shaped proteins winding along the exterior and tufts of fibrils extending from the cell tips. Inside the periplasm, cone‐like structures were found at each pole. Instead of the single peptidoglycan layer typical of other Gram‐negative bacteria, two distinct periplasmic layers were observed. These layers formed a central open space that contained two flagella situated adjacent to each other. In some areas, the inner membrane formed flattened invaginations that protruded into the cytoplasm. High‐speed light microscopic images of swimming T. primitia cells showed that cell bodies remained rigid and moved in a helical rather than planar motion. Together, these findings support the ‘rolling cylinder’ model for T. primitia motility that posits rotation of the protoplasmic cylinder within the outer sheath.
The bacterial Wood-Ljungdahl pathway for CO(2)-reductive acetogenesis is important for the nutritional mutualism occurring between wood-feeding insects and their hindgut microbiota. A key step in this pathway is the reduction of CO(2) to formate, catalysed by the enzyme formate dehydrogenase (FDH). Putative selenocysteine- (Sec) and cysteine- (Cys) containing paralogues of hydrogenase-linked FDH (FDH(H)) have been identified in the termite gut acetogenic spirochete, Treponema primitia, but knowledge of their relevance in the termite gut environment remains limited. In this study, we designed degenerate PCR primers for FDH(H) genes (fdhF) and assessed fdhF diversity in insect gut bacterial isolates and the gut microbial communities of termites and cockroaches. The insects examined herein represent three wood-feeding termite families, Termopsidae, Kalotermitidae and Rhinotermitidae (phylogenetically 'lower' termite taxa); the wood-feeding roach family Cryptocercidae (the sister taxon to termites); and the omnivorous roach family Blattidae. Sec and Cys FDH(H) variants were identified in every wood-feeding insect but not the omnivorous roach. Of 68 novel alleles obtained from inventories, 66 affiliated phylogenetically with enzymes from T. primitia. These formed two subclades (37 and 29 phylotypes) almost completely comprised of Sec-containing and Cys-containing enzymes respectively. A gut cDNA inventory showed transcription of both variants in the termite Zootermopsis nevadensis (family Termopsidae). The gene patterns suggest that FDH(H) enzymes are important for the CO(2)-reductive metabolism of uncultured acetogenic treponemes and imply that the availability of selenium, a trace element, shaped microbial gene content in the last common ancestor of dictyopteran, wood-feeding insects, and continues to shape it to this day.
We grew a soil enrichment culture to identify organisms that anaerobically oxidize phenazine-1-carboxylic acid. A strain of Citrobacter portucalensis was isolated from this enrichment and sequenced by both Illumina and PacBio technologies. It has a genome with a length of 5.3 Mb, a G+C content of 51.8%, and at least one plasmid.
Variovorax paradoxus is a microorganism of special interest due to its diverse metabolic capabilities, including the biodegradation of both biogenic compounds and anthropogenic contaminants. V. paradoxus also engages in mutually beneficial interactions with both bacteria and plants. The complete genome sequence of V. paradoxus S110 is composed of 6,754,997 bp with 6,279 predicted protein-coding sequences within two circular chromosomes. Genomic analysis has revealed multiple metabolic features for autotrophic and heterotrophic lifestyles. These metabolic diversities enable independent survival, as well as a symbiotic lifestyle. Consequently, S110 appears to have evolved into a superbly adaptable microorganism that is able to survive in ever-changing environmental conditions. Based on our findings, we suggest V. paradoxus S110 as a potential candidate for agrobiotechnological applications, such as biofertilizer and biopesticide. Because it has many associations with other biota, it is also suited to serve as an additional model system for studies of microbe-plant and microbe-microbe interactions.
Chemolithoautotrophic manganese oxidation has long been theorized but only recently demonstrated in a bacterial coculture. The majority member of the coculture, "Candidatus Manganitrophus noduliformans," is a distinct but not yet isolated lineage in the phylum Nitrospirota (Nitrospirae). Here, we established two additional MnCO3-oxidizing cultures using inocula from Santa Barbara (California) and Boetsap (South Africa). Both cultures were dominated by strains of a new species, designated "Candidatus Manganitrophus morganii." The next most abundant members differed in the available cultures, suggesting that while "Ca. Manganitrophus" species have not been isolated in pure culture, they may not require a specific syntrophic relationship with another species. Phylogeny of cultivated "Ca. Manganitrophus" and related metagenome-assembled genomes revealed a coherent taxonomic family, "Candidatus Manganitrophaceae," from both freshwater and marine environments and distributed globally. Comparative genomic analyses support this family being Mn(II)-oxidizing chemolithoautotrophs. Among the 895 shared genes were a subset of those hypothesized for Mn(II) oxidation (Cyc2 and PCC_1) and oxygen reduction (TO_1 and TO_2) that could facilitate Mn(II) lithotrophy. An unusual, plausibly reverse complex 1 containing 2 additional pumping subunits was also shared by the family, as were genes for the reverse tricarboxylic acid carbon fixation cycle, which could enable Mn(II) autotrophy. All members of the family lacked genes for nitrification found in Nitrospira species. The results suggest that "Ca. Manganitrophaceae" share a core set of candidate genes for the newly discovered manganese-dependent chemolithoautotrophic lifestyle and likely have a broad, global distribution. IMPORTANCE Manganese (Mn) is an abundant redox-active metal that cycles in many of Earth's biomes. While diverse bacteria and archaea have been demonstrated to respire Mn(III/IV), only recently have bacteria been implicated in Mn(II) oxidation-dependent growth. Here, two new Mn(II)-oxidizing enrichment cultures originating from two continents and hemispheres were examined. By comparing the community composition of the enrichments and performing phylogenomic analysis on the abundant Nitrospirota therein, new insights are gleaned on cell interactions, taxonomy, and machineries that may underlie Mn(II)-based lithotrophy and autotrophy.