Abstract Cell identity can be reprogrammed, naturally or experimentally, albeit with low frequency. Why given cells, but not their neighbours, undergo a cell identity conversion remains unclear. We find that Notch signalling plays a key role to promote natural transdifferentiation in C. elegans . Endogenous Notch signal endows a cell with the competence to transdifferentiate by promoting plasticity factors expression ( hlh-16/Olig and sem-4/Sall ). Strikingly, exogenous Notch can trigger ectopic transdifferentiation in vivo . However, Notch signalling can both promote and block transdifferentiation depending on its activation timing. Notch only promotes transdifferentiation during an early precise window of opportunity and signal duration must be tightly controlled in time. Our findings emphasise the importance of temporality and dynamics of the underlying molecular events preceding the initiation of natural cell reprogramming. Finally, our results support a model where both an extrinsic signal and the intrinsic cellular context combine to empower a cell with the competence to transdifferentiate.
La schistosomiase constitue un probleme majeur de sante publique dans de nombreux pays emergents d'Afrique, d'Amerique Latine et d'Asie du Sud Est, causant pres de 300 000 deces par an. Cette maladie est due au schistosome qui est un ver parasite possedant un cycle de vie complexe. A ce jour une seule drogue est utilisee en monotherapie, le praziquantel ou PZQ, pour lutter contre cette maladie. En raison d'apparitions de resistances au PZQ, il devient necessaire de rechercher de nouvelles cibles therapeutiques contre le ver. Au cours de ma these je me suis penche sur l'utilisation potentielle des Recepteurs Tyrosine Kinase (RTK) de schistosomes comme cibles therapeutiques contre le parasite. En effet, les kinases du schistosome semblent presenter un fort degre de specificite, ce qui les rend attractives pour le l'elaboration d'inhibiteurs potentiels. Dans ce cadre, nous avons poursuivi l'etude de SmIR-1, un recepteur de l'insuline de Schistosoma mansoni decouvert au laboratoire, et montre qu'il pouvait etre implique dans la prise de glucose chez le parasite. Dans un second temps, a partir d'un RTK totalement atypique decrit au laboratoire chez S. Mansoni, nous avons decouvert une nouvelle famille de RTK nommes les VKR pour Venus Kinase Recepteur, qui semblerait etendue a l'ensemble des invertebres et dont nous avons entrepris l'etude fonctionnelle
Background Tyrosine kinase receptors (RTKs) comprise a large family of membrane receptors that regulate various cellular processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT) linked through a single transmembrane domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor. Methods and Findings Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR), were identified in many insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed monophyletic groups, the VFT group being close to that of GABAB receptors and the TK one being close to that of insulin receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads indicates a putative function of VKR in reproduction and/or development. Conclusion The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of human parasitic and infectious diseases.
Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.
Abstract In multiple species, certain tissue types are prone to acquiring greater loads of mitochondrial genome (mtDNA) mutations relative to others, however the mechanisms that drive these heteroplasmy differences are unknown. We found that the conserved PTEN-induced putative kinase (PINK1/PINK-1) and the E3 ubiquitin-protein ligase parkin (PDR-1), which are required for mitochondrial autophagy (mitophagy), underlie stereotyped differences in heteroplasmy of a deleterious mitochondrial genome mutation (ΔmtDNA) between major somatic tissues types in Caenorhabditis elegans . We demonstrate that tissues prone to accumulating ΔmtDNA have lower mitophagy responses than those with low mutation levels, such as neurons. Moreover, we show that ΔmtDNA heteroplasmy increases when proteotoxic species that are associated with neurodegenerative disease and mitophagy inhibition are overexpressed in the nervous system. Together, these results suggest that PINK1 and parkin drive organism-wide patterns of heteroplasmy and provide evidence of a causal link between proteotoxicity, mitophagy, and mtDNA mutation levels in neurons.
Cell-Specific Mitochondria Affinity Purification (CS-MAP) enables isolation and purification of intact mitochondria from individual cell types of Caenorhabditis elegans. The approach is based on the cell-specific expression of a recombinant hemagglutinin (HA)-tag fused to the TOMM-20 protein that decorates the surface of mitochondria, thereby allowing their immunomagnetic purification. This protocol describes the CS-MAP procedure performed on large populations of animals. The purified mitochondria are suitable for subsequent nucleic acid, protein, and functional analyses. For complete details on the use and execution of this protocol, please refer to Ahier et al. (2018, 2021).