Purpose : Glioblastoma Multiforme (GBM) brain tumor is heterogeneous in nature; so, its quantification depends on how to accurately segment different parts of the tumor, i.e. active tumor, edema and necrosis. This procedure becomes more effective when physiological information like diffusion-weighted-imaging (DWI) and perfusion-weighted-imaging (PWI) are incorporated with the anatomical MRI. In this preliminary tumor quantification work, the idea is to characterize different regions of the GBM tumors in an MRI-based multi-parametric approach to achieve more accurate characterization of pathological regions, which cannot be obtained by using individual modalities. Methods : For this purpose, three MR sequences, namely T2-weighted imaging (anatomical MR imaging), PWI and DWI of five GBM patients were acquired. To enhance the delineation of the boundaries of each pathological region (peri-tumoral edema, tumor and necrosis), the spatial fuzzy C-means (FCM) algorithm is combined with the region growing (RG) method. Results : The results show that exploiting the multi-parametric approach along with the proposed segmentation method can improve characterization of tumor cells, edema and necrosis in comparison to mono-parametric imaging approach. Conclusion : The proposed MRI-based multi-parametric segmentation approach has the potential to accurately segment tumorous regions, leading to an efficient design of the treatment planning, e.g. in radiotherapy.
Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods.We studied three groups of subjects: heroin abusers treated with abstinent based therapy (ABT) method, heroin abusers treated with Methadone Maintenance Therapy (MMT) method, and a control group. They were all scanned with functional magnetic resonance imaging (fMRI), using a 6-block task, where each block consisted of the rest-craving-rest-neutral sequence. Using the dynamic causal modeling (DCM) algorithm, brain effective connectivity network (caused by the drug craving stimulation) was quantified for all groups. In this regard, 4 brain areas were selected for this analysis based on previous findings: ventromedial prefrontal cortex (VMPFC), dorsolateral prefrontal cortex (DLPFC), amygdala, and ventral striatum.Our results indicated that the control subjects did not show significant brain activations after craving stimulations, but the two other groups showed significant brain activations in all 4 regions. In addition, VMPFC showed higher activations in the ABT group compared to the MMT group. The effective connectivity network suggested that the control subjects did not have any direct input from drug-related cue indices, while the other two groups showed reactions to these cues. Also, VMPFC displayed an important role in ABT group. In encountering the craving pictures, MMT subjects manifest a very simple mechanism compared to other groups.This study revealed an activation network similar to the emotional and inhibitory control networks observed in drug abusers in previous works. The results of DCM analysis also support the regulatory role of frontal regions on bottom regions. Furthermore, this study demonstrates the different effective connectivity patterns after drug abuse treatment and in this way helps the experts in the field.