Abstract Glioblastoma multiforme (GBM) almost invariably recurs and tumors exhibit resistance to conventional therapies. One mechanism of resistance is enhanced DNA damage response (DDR) to alkylating chemotherapy or radiation therapy (RT). We have generated 8 novel GBM patient-derived xenograft (PDX) models of tumor recurrence following serial in vivo irradiation (6 x 2Gy fractions over 2 weeks for 6+ rounds). RNA sequencing has revealed enrichment of a number of DDR pathways in the RT selected (RTS) PDX. Differential enrichment across the RTS PDX suggests multiple molecular routes to acquired RT resistance. We have also identified differential enrichment of molecular signatures for cell cycle progression, stemness, and chromatin remodeling all suggesting decreased proliferation, increased stemness, and more compacted chromatin states associated with RTS PDX. We have identified altered kinase signaling in RTS PDX that may suggest targetable signaling pathways using small molecule inhibitors. Integrated ‘–omics’ analysis has identified SRC family kinases and altered expression of collagens related to the RTS profile. Long non-coding RNAs (lncRNA) have the potential to regulate molecular phenotypes through nucleic acid binding. We have identified 269 lncRNAs significantly differentially expressed in the RTS condition. We have determined that a number of these transcripts have DNA binding potential in gene regulatory regions proximal to kinase, DDR, cell cycle, stemness, and chromatin remodeling genes. Analysis of lncRNAs and genes proximal to their binding sites has revealed regulatory networks potentially governing cell fate and phenotype. We have observed complex correlations of some of these transcripts, such as ZFAS1, which has a positive correlation with expression of stemness-promoting genes and simultaneous inverse correlation with cell cycle genes. This suggests ZFAS1 could be a phenotypic switch between a RT-sensitive proliferating cell and a RT-resistant non-proliferating stem-like cell. LncRNAs may represent a novel therapeutic target for the treatment of therapy resistant, recurrent GBM.
Genomic enhancer elements regulate gene expression programs important for neuronal fate and function and are implicated in brain disease states. Enhancers undergo bidirectional transcription to generate non-coding enhancer RNAs (eRNAs). However, eRNA function remains controversial. Here, we combined ATAC-Seq and RNA-Seq datasets from three distinct neuronal culture systems in two activity states, enabling genome-wide enhancer identification and prediction of putative enhancer-gene pairs based on correlation of transcriptional output. Notably, stimulus-dependent enhancer transcription preceded mRNA induction, and CRISPR- based activation of eRNA synthesis increased mRNA at paired genes, functionally validating enhancer-gene predictions. Focusing on enhancers surrounding the Fos gene, we report that targeted eRNA manipulation bidirectionally modulates Fos mRNA, and that Fos eRNAs directly interact with the histone acetyltransferase domain of the enhancer-linked transcriptional co-activator CBP. Together, these results highlight the unique role of eRNAs in neuronal gene regulation and demonstrate that eRNAs can be used to identify putative target genes.
The ventral tegmental area (VTA) is a complex brain region that is essential for reward function and frequently implicated in neuropsychiatric disease. While decades of research on VTA function have focused on dopamine neurons, recent evidence has identified critical roles for GABAergic and glutamatergic neurons in reward processes. Additionally, although subsets of VTA neurons express genes involved in the synthesis and transport of multiple neurotransmitters, characterization of these combinatorial populations has largely relied on low-throughput methods. To comprehensively define the molecular architecture of the VTA, we performed single-nucleus RNA sequencing on 21,600 cells from the rat VTA. Analysis of neuronal subclusters identifies selective markers for dopamine and combinatorial neurons, reveals expression profiles for receptors targeted by drugs of abuse, and demonstrates population-specific enrichment of gene sets linked to brain disorders. These results highlight the heterogeneity of the VTA and provide a resource for further exploration of VTA gene expression.
Drug addiction is a worldwide health problem, with overdose rates of both psychostimulants and opioids currently on the rise in many developed countries. Drugs of abuse elevate dopamine levels in the nucleus accumbens (NAc) and alter transcriptional programs believed to promote long-lasting synaptic and behavioral adaptations. However, even with well-studied drugs such as cocaine, drug-induced transcriptional responses remain poorly understood due to the cellular heterogeneity of the NAc and complex drug actions via multiple neurotransmitter systems. Here, we leveraged high-throughput single-nucleus RNA-sequencing to create a comprehensive molecular atlas of cell subtypes in the NAc, defining both sex-specific and cell type-specific responses to acute cocaine experience in a rat model system. Using this transcriptional map, we identified specific neuronal subpopulations that are activated by cocaine, and defined an immediate early gene expression program that is upregulated following cocaine experience in vivo and dopamine (DA) receptor activation in vitro . To characterize the neuronal response to this DA-mediated gene expression signature, we engineered a large-scale CRISPR/dCas9 activation strategy to recreate this program. Multiplexed induction of this gene program initiated a secondary synapse-centric transcriptional profile, altered striatal physiology in vitro , and enhanced cocaine sensitization in vivo . Taken together, these results define the genome-wide transcriptional response to cocaine with cellular precision, and demonstrate that drug-responsive gene programs are sufficient to initiate both physiological and behavioral adaptations to drugs of abuse.
With an increasing amount of biological data available publicly, there is a need for a guide on how to successfully download and use this data. The 10 simple rules for using public biological data are: (1) use public data purposefully in your research; (2) evaluate data for your use case; (3) check data reuse requirements and embargoes; (4) be aware of ethics for data reuse; (5) plan for data storage and compute requirements; (6) know what you are downloading; (7) download programmatically and verify integrity; (8) properly cite data; (9) make reprocessed data and models Findable, Accessible, Interoperable, and Reusable (FAIR) and share; and (10) make pipelines and code FAIR and share. These rules are intended as a guide for researchers wanting to make use of available data and to increase data reuse and reproducibility.
With an increasing amount of biological data available publicly, there is a need for a guide on how to successfully download and use this data. The Ten simple rules for using public biological data are: 1) use public data purposefully in your research, 2) evaluate data for your use case, 3) check data reuse requirements and embargoes, 4) be aware of ethics for data reuse, 5) plan for data storage and compute requirements, 6) know what you are downloading, 7) download programmatically and verify integrity, 8) properly cite data, 9) make reprocessed data and models Findable, Accessible, Interoperable, and Reusable (FAIR) and share, and 10) make pipelines and code FAIR and share. These rules are intended as a guide for researchers wanting to make use of available data and to increase data reuse and reproducibility.
Summary Drugs of abuse activate defined neuronal ensembles in brain reward structures such as the nucleus accumbens (NAc), which are thought to promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, the mechanisms that sculpt NAc ensemble participation are largely unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling to identify expression of the secreted glycoprotein Reelin (encoded by the Reln gene) as a marker of cocaine-activated neuronal ensembles within the rat NAc. Multiplexed in situ detection confirmed selective expression of the immediate early gene Fos in Reln+ neurons after cocaine experience, and also revealed enrichment of Reln mRNA in Drd1 + medium spiny neurons (MSNs) in both the rat and human brain. Using a novel CRISPR interference strategy enabling selective Reln knockdown in the adult NAc, we observed altered expression of genes linked to calcium signaling, emergence of a transcriptional trajectory consistent with loss of cocaine sensitivity, and a striking decrease in MSN intrinsic excitability. At the behavioral level, loss of Reln prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. Together, these results identify Reelin as a critical mechanistic link between ensemble participation and cocaine-induced behavioral adaptations.
Summary Brain-derived neurotrophic factor ( Bdnf ) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5′ non-coding exons ( I-IXa ), which are spliced to a common 3′ coding exon ( IX ). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I ( Bdnf I ) or exon IV ( Bdnf IV ) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation (CRISPRa) system in which catalytically-dead Cas9 (dCas9) fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs (sgRNAs), resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I , but not Bdnf IV , increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV , but not Bdnf I , in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.
Neuronal and behavioral adaptations to novel stimuli are regulated by temporally dynamic waves of transcriptional activity, which shape neuronal function and guide enduring plasticity. Neuronal activation promotes expression of an immediate early gene (IEG) program comprised primarily of activity-dependent transcription factors, which are thought to regulate a second set of late response genes (LRGs). However, while the mechanisms governing IEG activation have been well studied, the molecular interplay between IEGs and LRGs remain poorly characterized. Here, we used transcriptomic and chromatin accessibility profiling to define activity-driven responses in rat striatal neurons. As expected, neuronal depolarization generated robust changes in gene expression, with early changes (1 h) enriched for inducible transcription factors and later changes (4 h) enriched for neuropeptides, synaptic proteins, and ion channels. Remarkably, while depolarization did not induce chromatin remodeling after 1 h, we found broad increases in chromatin accessibility at thousands of sites in the genome at 4 h after neuronal stimulation. These putative regulatory elements were found almost exclusively at non-coding regions of the genome, and harbored consensus motifs for numerous activity-dependent transcription factors such as AP-1. Furthermore, blocking protein synthesis prevented activity-dependent chromatin remodeling, suggesting that IEG proteins are required for this process. Targeted analysis of LRG loci identified a putative enhancer upstream of Pdyn (prodynorphin), a gene encoding an opioid neuropeptide implicated in motivated behavior and neuro-psychiatric disease states. CRISPR-based functional assays demonstrated that this enhancer is both necessary and sufficient for Pdyn transcription. This regulatory element is also conserved at the human PDYN locus, where its activation is sufficient to drive PDYN transcription in human cells. These results suggest that IEGs participate in chromatin remodeling at enhancers and identify a conserved enhancer that may act as a therapeutic target for brain disorders involving dysregulation of Pdyn.
Neuronal and behavioral adaptations to novel stimuli are regulated by temporally dynamic waves of transcriptional activity, which shape neuronal function and guide enduring plasticity. Neuronal activation promotes expression of an immediate early gene (IEG) program comprised primarily of activity-dependent transcription factors, which are thought to regulate a second set of late response genes (LRGs). However, while the mechanisms governing IEG activation have been well studied, the molecular interplay between IEGs and LRGs remain poorly characterized. Here, we used transcriptomic and chromatin accessibility profiling to define activity-driven responses in rat striatal neurons. As expected, neuronal depolarization generated robust changes in gene expression, with early changes (1 hr) enriched for inducible transcription factors and later changes (4 hr) enriched for neuropeptides, synaptic proteins, and ion channels. Remarkably, while depolarization did not induce chromatin remodeling after 1 hr, we found broad increases in chromatin accessibility at thousands of sites in the genome at 4 hr after neuronal stimulation. These putative regulatory elements were found almost exclusively at non-coding regions of the genome, and harbored consensus motifs for numerous activity-dependent transcription factors such as AP-1. Furthermore, blocking protein synthesis prevented activity-dependent chromatin remodeling, suggesting that IEG proteins are required for this process. Targeted analysis of LRG loci identified a putative enhancer upstream of Pdyn (prodynorphin), a gene encoding an opioid neuropeptide implicated in motivated behavior and neuropsychiatric disease states. CRISPR-based functional assays demonstrated that this enhancer is both necessary and sufficient for Pdyn transcription. This regulatory element is also conserved at the human PDYN locus, where its activation is sufficient to drive PDYN transcription in human cells. These results suggest that IEGs participate in chromatin remodeling at enhancers and identify a conserved enhancer that may act as a therapeutic target for brain disorders involving dysregulation of Pdyn .