Benign prostatic hyperplasia (BPH) with lower urinary tract symptoms (LUTS) is a common disease among elderly men, for which safe and effective treatment strategies remain limited. The aim of the present study was to explore the potential effects of phosphodiesterase 5A3 (PDE5A3) silencing on human prostate smooth muscle cells (HPSMCs). HPSMCs were initially obtained from patients with BPH/LUTS. Short hairpin RNA (shRNA) targeting the PDE5A3 gene was subsequently transfected into cultured HPSMCs. The expression of PDE5A3 was measured using reverse transcription‑quantitative PCR and western blotting. cGMP levels were then measured using western blotting and immunocytochemical staining and intracellular Ca2+ concentration was measured using rhod2‑AM in HPSMCs after transfection. HPSMC proliferation was also observed within 4 days. Cells transfected with PDE5A3‑shRNA2 exhibited the most notable decline in PDE5A3 expression compared with that in the Control or NC groups. cGMP levels in HPSMCs transfected with PDE5A3‑shRNA2 was significantly increased compared with those in the Control or NC groups, whereas intracellular Ca2+ concentrations in cells in the PDE5A3‑shRNA2 group were decreased compared with that in the Control or NC groups. The proliferation of HPSMCs in the PDE5A3‑shRNA2 group was also inhibited compared with that in the Control or NC groups after 72 h of culture. In conclusion, shRNA‑mediated silencing of PDE5A3 was able to increase the levels of cGMP whilst reducing the concentration of Ca2+ in HPSMCs, in turn suppressing their proliferation. These findings may potentially provide a novel therapeutic target for treating BPH/LUTS.
: Ischemia/reperfusion (IR)-induced acute kidney injury (AKI) is a common clinical syndrome. Stem/progenitor cell therapy is a promising option to foster the intrinsic capacity for kidney regeneration. However, there are still several challenges to be resolved, including the potential risks during cell culture, low retention rate after transplantation, and unclear effect on the progression of chronic kidney disease (CKD). Recently, nonexpanded adipose stromal vascular fraction (SVF) has been regarded as an attractive cell source for cell-based therapy. Preconditioning with ischemia has been suggested as a useful method to promote the retention and survival of transplanted cells in vivo. In this study, freshly isolated autologous SVF was transplanted to the kidney of rats before ischemia, and then an IR-induced AKI model was established. Postischemic administration of SVF to the kidney was performed after renal IR injury was induced. A higher cell retention rate was detected in the preischemic group. Preischemic administration of SVF showed stronger functional and morphologic protection from renal IR injury than postischemic administration, through enhancing tubular cell proliferation and reducing apoptosis. Progression of kidney fibrosis was also significantly delayed by preischemic administration of SVF, which exhibited stronger inhibition of transforming growth factor-β1-induced epithelia-mesenchymal transition and microvascular rarefaction. In addition, in vitro study showed that prehypoxic administration of SVF could significantly promote the proliferation, migration, and survival of hypoxic renal tubular epithelial cells. In conclusion, our study demonstrated that preischemic administration of nonexpanded adipose SVF protected the kidney from both acute IR injury and long-term risk of developing CKD.Renal ischemia/reperfusion (IR) injury is a common clinical syndrome. Cell-based therapy provides a promising option to promote renal repair after IR injury. However, several challenges still remain because of the potential risks during cell culture, low retention rate after transplantation, and unclear effect on the progression of chronic kidney disease. Stromal vascular fraction (SVF) is considered as an attractive cell source. This study demonstrated that preischemic administration of uncultured SVF could increase cell retention and then improve renal function and structure at both early and long-term stage after IR, which may provide a novel therapeutic approach for IR injury.
Circular RNAs (circRNAs) are a class of novel non-coding RNAs (ncRNAs). Emerging evidence demonstrates that circRNAs play crucial roles in many biological processes by regulating linear RNA transcription, downstream gene expression and protein or peptide translation. Meanwhile, recent studies have suggested that circRNAs have the potential to be oncogenic or anti-oncogenic and play vital regulatory roles in the initiation and progression of tumors. Circular RNA Forkhead box O3 (circ-Foxo3, hsa_circ_0006404) is encoded by the human FOXO3 gene and is one of the most studied circular RNAs acting as a sponge for potential microRNAs (miRNAs) (Du et al., 2016). Previous studies have reported that circ-Foxo3 is involved in the development and tumorigenesis of a variety of cancers (bladder, gastric, acute lymphocytic leukemia, glioma, etc.). In this review, we summarize the current studies concerning circ-Foxo3 deregulation and the correlative mechanism in various human cancers. We also point out the potential clinical applications of this circRNA as a biomarker for cancer diagnosis and prognosis.
Acute rejection (AR) is a major complication post renal transplantation, with no widely-accepted non-invasive biomarker. This study aimed to explore the expression profiles of long non-coding RNAs (lncRNAs) in the peripheral blood (PB) of renal transplant recipients and their potential diagnostic values.The genome-wide lncRNA expression profiles were analyzed in 150 PB samples from pediatric and adult renal transplant (PRTx and ARTx) cohorts. The diagnostic performance of differentially expressed lncRNA was determined using receiver operator characteristic curve, with area under the curve (AUC) and 95% confidential interval (CI). Finally, a risk score was constructed with logistical regression model.A total of 162 lncRNAs were found differentially expressed in PRTx cohort, while 163 in ARTx cohort. Among these identified lncRNAs, 23 deregulated accordingly in both cohorts, and could distinguish AR recipients from those without AR. Finally, a risk score with two most significant lncRNAs (AF264622 and AB209021) was generated and exhibited excellent diagnostic performance in both PRTx (AUC:0.829, 95% CI:0.735-0.922) and ARTx cohorts (AUC: 0.889, 95% CI: 0.817-0.960).A molecular signature of two lncRNAs in PB could serve as a novel non-invasive biomarker for the diagnosis of AR in both pediatric and adult renal transplant recipients.
Objective: Autologous endothelial progenitor cells (EPCs) might be alternative angiogenic cell sources for vascularization of tissue-engineered bladder, while isolation and culture of EPCs from peripheral blood in adult are usually time-consuming and highly inefficient. Recent evidence has shown that EPCs also exist in the adipose tissue. As adipose tissue is plentiful in the human body and can be easily harvested through a minimally invasive method, the aim of this study was to culture and characterize endothelial progenitor cells from adipose tissue (ADEPCs) and investigate their potential for the neovascularization of tissue-engineered bladder. Methods: Adipose stromal vascular fraction (SVF) was isolated and used for the culture of ADEPCs and adipose derived stem cells (ADSCs). Rat bladder smooth muscle cells (RBSMCs) were isolated and cultured from rat bladder. Cells were characterized by immunofluorescence staining and flow cytometric analysis. The capabilities of cell proliferation, DiI-Ac-LDL uptake, and UEA-1 binding were evaluated. Real-time RT-PCR and ELISA were performed to assess the expression of angiogenic factors. ADEPCs were seeded onto matrigel and bladder acellular matrix (BAM), and the capability of tube formation in these scaffolds was evaluated. Results: After SVF was cultured for one week, ADEPCs with typical cobblestone morphology emerged and could be isolated from ADSCs according to their different responses to trypsinization. RBSMCs exhibited typical spindle-shaped morphology. ADEPCs had higher proliferative potential than ADSCs and RBSMCs. ADEPCs stained positive for CD34, Stro-1, VEGFR-2, eNOS and CD31 but negative for α-SMA, CD14 and CD45. ADSCs stained positive for CD34, Stro-1 and α-SMA but negative for VEGFR-2, eNOS, CD31, CD14 and CD45. RBSMCs stained only positive for α-SMA. ADEPCs could be expanded from a single cell at an early passage to a cell cluster containing more than 10,000 cells. ADEPCs were able to uptake DiI-Ac-LDL, bind UEA-1 and form capillary-like structures in three-dimensional scaffolds (matrigel and bladder acellular matrix). ADEPCs were also able to enhance the human umbilical vein endothelial cells’ capability of capillary-like tube formation on matrigel. Additionally, significantly higher levels of mRNA and protein of vascular endothelial growth factor were found in ADEPCs than in RBSMCs. Conclusions: These results suggest the potential use of ADEPCs as angiogenic cell sources for engineering bladder tissue.
Objective
To investigate the protective effects and underlying mechanism of remote ischemic preconditioning (RIPC) in kidney ischemia reperfusion injury (IRI).
Methods
Sprague-Dawley rats were randomly divided into three groups following right-side nephrectomy: Sham-group, IRI-group, RIPC-group. At 24 h after reperfusion, the blood samples, renal tissues and urine were collected. The degree of renal injury was evaluated by serum creatinine (SCr), blood urea nitrogen (BUN) and histological score. We also detected the expression of cyclooxygenase-2 (COX-2), membrane associated prostaglandin E synthase-1 (mPGES-1) and prostaglandin E-2 (PGE2).
Results
Rats treated with RIPC before ischemia revealed significant improvements in renal function (P value is 0.031 and 0.004 respectively) and morphology (IRI: 3.63±0.54, RIPC: 2.44±0.66, P=0.001). The results derived from immunohistochemistry revealed that the content of COX-2 and PGE2 were obviously decreased in RIPC group than those in IRI group (P value is 0.000 and 0.034 respectively), however, the expression of mPGES-1 remained no significant change (P=0.367).
Conclusion
The results suggested that RIPC could attenuate renal IRI and improve kidney function. The COX-2/PGE2 pathway may play a critical role in this process.
Key words:
Remote ischemic preconditioning; Ischemia reperfusion injury; Cyclooxygenase-2
Introduction Renal ischaemia reperfusion injury is an inevitable pathophysiology in different clinical situations including laparoscopic partial nephrectomy (LPN), which can obviously decrease the renal function after surgery. Pneumoperitoneum preconditioning (PP) is a promising approach that can yield a protective effect on kidney, which has already been demonstrated in some animal models. The present study is designed to assess whether the PP can yield a clinical renoprotective role after LPN. Methods and analysis This study is a randomised, prospective, double-blind and parallel controlled clinical trial. Eligible participants will be patients with renal tumours and willing to choose elective LPN. Patients randomised to the treatment arm will receive PP consisted of three cycles of 5 min insufflation and 5 min desufflation before LPN, while the control arm will receive a sham operation. The primary endpoints are glomerular filtration rate and the level of serum cystatin C within 6 months after desufflation. The secondary endpoints are serum creatinine, estimated glomerular filtration rate, alanine transaminase, serum amylase, intestinal fatty acid binding protein, postoperative hospital stay, the incidence of adverse events and mortality in postoperative 6 months. Ethics and dissemination This study has been approved by the institutional ethics committee of Nanjing First Hospital. The results of this study will be reported faithfully through scientific conferences or published articles. Trial registration number NCT03822338 .
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1.
Abstract MicroRNAs (miRNAs), a group of small noncoding RNAs, are widely involved in the regulation of gene expression via binding to complementary sequences at 3′‐untranslated regions (3′‐UTRs) of target messenger RNAs. Recently, downregulation of miR‐133b has been detected in various human malignancies. Here, the potential biological role of miR‐133b in bladder cancer (BC) was investigated. In this study, we found the expression of miR‐133b was markedly downregulated in BC tissues and cell lines (5637 and T24), and was correlated with poor overall survival. Notably, transgelin 2 (TAGLN2) was found to be widely upregulated in BC, and overexpression of TAGLN2 also significantly increased risks of advanced TMN stage. We further identified that upregulation of miR‐133b inhibited glucose uptake, invasion, angiogenesis, colony formation and enhances gemcitabine chemosensitivity in BC cell lines by targeting TAGLN2. Additionally, we showed that miR‐133b promoted the proliferation of BC cells, at least partially through a TAGLN2‐mediated cell cycle pathway. Our results suggest a novel miR‐133b/TAGLN2/cell cycle pathway axis controlling BC progression; a molecular mechanism which may offer a potential therapeutic target.