Damage to the dentin matrix instigates the proliferation and mobilization of dental progenitor cells to the injury site, the mechanisms of which are not defined. EphB receptors and ephrin-B ligands expressed within the perivascular niche of dental pulp have been implicated following tooth injury. We propose that elevated levels of ephrin-B1 following injury may prevent the proliferation and migration of dental pulp stem cell (DPSC), while EphB/ephrin-B interaction facilitates odontoblastic differentiation. The migration, proliferation, and differentiation of DPSC in response to Eph/ephrin-B molecules was assessed in an established ex vivo tooth injury model and by in vitro assays for the assessment of colony formation and differentiation. Analysis of our data demonstrated that EphB forward signaling promoted DPSC proliferation, while inhibiting migration. Conversely, reverse signaling enhanced DPSC mineral production. These observations suggest that EphB/ephrin-B molecules are important for perivascular DPSC migration toward the dentin surfaces and differentiation into functional odontoblasts, following damage to the dentin matrix.
Introduction Transient ischaemic attack (TIA) may be a warning sign of stroke and difficult to differentiate from minor stroke and TIA-mimics. Urgent evaluation and diagnosis is important as treating TIA early can prevent subsequent strokes. Recent improvements in mass spectrometer technology allow quantification of hundreds of plasma proteins and lipids, yielding large datasets that would benefit from different approaches including machine learning. Using plasma protein, lipid and radiological biomarkers, our study will develop predictive algorithms to distinguish TIA from minor stroke (positive control) and TIA-mimics (negative control). Analysis including machine learning employs more sophisticated modelling, allowing non-linear interactions, adapting to datasets and enabling development of multiple specialised test-panels for identification and differentiation. Methods and analysis Patients attending the Emergency Department, Stroke Ward or TIA Clinic at the Royal Adelaide Hospital with TIA, minor stroke or TIA-like symptoms will be recruited consecutively by staff-alert for this prospective cohort study. Advanced neuroimaging will be performed for each participant, with images assessed independently by up to three expert neurologists. Venous blood samples will be collected within 48 hours of symptom onset. Plasma proteomic and lipid analysis will use advanced mass spectrometry (MS) techniques. Principal component analysis and hierarchical cluster analysis will be performed using MS software. Output files will be analysed for relative biomarker quantitative differences between the three groups. Differences will be assessed by linear regression, one-way analysis of variance, Kruskal-Wallis H-test, χ 2 test or Fisher’s exact test. Machine learning methods will also be applied including deep learning using neural networks. Ethics and dissemination Patients will provide written informed consent to participate in this grant-funded study. The Central Adelaide Local Health Network Human Research Ethics Committee approved this study (HREC/18/CALHN/384; R20180618). Findings will be disseminated through peer-reviewed publication and conferences; data will be managed according to our Data Management Plan (DMP2020-00062).
Epidemiological studies show strong associations between kidney dysfunction and risk of ischemic stroke (IS), the mechanisms of which are incompletely understood. We investigated whether these associations may reflect shared heritability because of a common polygenic basis and whether this differed for IS subtypes.Polygenic models were derived using genome-wide association studies meta-analysis results for 3 kidney traits: estimated glomerular filtration rate using serum creatinine (eGFRcrea: n=73 998), eGFR using cystatin C (eGFRcys: n=22 937), and urinary albumin to creatinine ratio (n=31 580). For each, single nucleotide polymorphisms passing 10 P value thresholds were used to form profile scores in 4561 IS cases and 7094 controls from the United Kingdom, Germany, and Australia. Scores were tested for association with IS and its 3 aetiological subtypes: large artery atherosclerosis, cardioembolism, and small vessel disease.Polygenic scores correlating with higher eGFRcrea were associated with reduced risk of large artery atherosclerosis, with 5 scores reaching P<0.05 (peak P=0.004) and all showing the epidemiologically expected direction of effect. A similar pattern was observed for polygenic scores reflecting higher urinary albumin to creatinine ratio, of which 3 associated with large artery atherosclerosis (peak P=0.01) and all showed the expected directional association. One urinary albumin to creatinine ratio-based score also associated with small vessel disease (P=0.03). The global pattern of results was unlikely to have occurred by chance (P=0.02).This study suggests possible polygenic correlation between renal dysfunction and IS. The shared genetic components may be specific to stroke subtypes, particularly large artery atherosclerotic stroke. Further study of the genetic relationships between these disorders seems merited.
Platelet rich plasma (PRP) has been proposed as a scaffold for pulp regeneration/revitalization instead of a blood clot. The aim of the following in vitro study was to evaluate the effect of PRP scaffold on proliferation, migration and differentiation of cultured ovine (sheep) dental pulp cells (ODPC) in the presence of dentine .PRP was prepared by centrifuging blood at 140 g for 12 min. ODPC were cultured on PRP or platelet poor plasma (PPP) scaffolds with and without dentine discs. Cell proliferation, migration and differentiation rates were assessed.ODPC cultured on PRP scaffold showed significantly greater proliferation rates, migration and mineralization compared with cells on PPP or without a scaffold. Dentine discs reduced the proliferation and mineralization potential of the cells.A PRP scaffold has a positive effect on the proliferation, migration and differentiation of ODPC; however, dentine discs have an adverse effect on the activity of ODPC.