The formation of new scaffolds to enhance healing magnitude is necessarily required in biomedical applications. Granulation tissue formation is a crucial stage of wound healing in which granulation tissue grows on the surface of a wound by the formation of connective tissue and blood vessels. In the present study, porous hydrogels were synthesized using chitosan incorporating latex of the Calotropis procera plant by using a freeze–thaw cycle to stimulate the formation of granulation tissue and angiogenesis in wound healing applications. Structural analysis through Fourier transform infrared (FTIR) spectroscopy confirmed the interaction between chitosan and Calotropis procera. Latex extract containing hydrogel showed slightly higher absorption than the control during water absorption analysis. Thermogravimetric analysis showed high thermal stability of the 60:40 combination of chitosan (CS) and Calotropis procera as compared to all other treatments and controls. A fabricated scaffold application on a chick chorioallantoic membrane (CAM) showed that all hydrogels containing latex extract resulted in a significant formation of blood vessels and regeneration of cells. Overall, the formation of connective tissues and blood capillaries and healing magnitude decreased in ascending order of concentration of extract.
Given the limited therapeutic management of infectious diseases caused by viruses, such as influenza and SARS-CoV-2, the medicinal use of essential oils obtained from Eucalyptus trees has emerged as an antiviral alternative, either as a complement to the treatment of symptoms caused by infection or to exert effects on possible pharmacological targets of viruses. This review gathers and discusses the main findings on the emerging role and effectiveness of Eucalyptus essential oil as an antiviral agent. Studies have shown that Eucalyptus essential oil and its major monoterpenes have enormous potential for preventing and treating infectious diseases caused by viruses. The main molecular mechanisms involved in the antiviral activity are direct inactivation, that is, by the direct binding of monoterpenes with free viruses, particularly with viral proteins involved in the entry and penetration of the host cell, thus avoiding viral infection. Furthermore, this review addresses the coadministration of essential oil and available vaccines to increase protection against different viruses, in addition to the use of essential oil as a complementary treatment of symptoms caused by viruses, where Eucalyptus essential oil exerts anti-inflammatory, mucolytic, and spasmolytic effects in the attenuation of inflammatory responses caused by viruses, in particular respiratory diseases.
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.
Teak being an iconic timber species the studies on its physiological and biochemical traits are very limited in India and worldwide. As a result, the current study aimed to assess biochemical parameters such as chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, chlorophyll ab ratio, proline content, and peroxidase activity, along with physiological parameters such as Chlorophyll stability index, relative water content, and leaf area, as well as ecophysiological traits such as net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), Leaf temperature, intrinsic water-use efficiency (iWUE), instantaneous water use efficiency and intrinsic carboxylation efficiency of thirty teak seed sources collected from different states of India. FCRITK 19, FCRITK 21, FCRITK 25, FCRITK 29, and FCRITK 05 were reported to have a greater photosynthetic rate (> 17 µmol m-2 s-1) coupled with a relative water content of more than 50% and a chlorophyll stability index of more than 60%, which could be used in a future genetic improvement programme. Correlation analysis indicated that water use efficiency was found to be strongly but negatively correlated with transpiration rate (-0.601) and stomatal conductance (-0.910). The proline content had a substantial positive correlation with the chlorophyll stability index (0.890), signifying that they are associated with abiotic stress conditions. Cluster analysis was attempted to discriminate the sources based on biochemical, physiological and ecophysiological traits. Eleven sources (FCRITK 25, FCRITK 27, FCRITK 29, FCRITK 14, FCRITK 30, FCRITK 16, FCRITK 05, FCRITK 13, FCRITK 02, FCRITK 17 and FCRITK 15) exhibited superior performance compared to rest of the sources.
The co-precipitation and in situ modified Hummers' method was used to synthesize Nickel Spinal Ferrites (NiFe) nanoparticles and NiFe coated with Thermally Reduced Graphene Oxide (TRGO) (NiFe-TRGO) nanoparticles, respectively. By using polyvinyl chloride (PVC), tetrahydrofuran (THF), and NiFe-TRGO, the nanocomposite film was synthesized using the solution casting technique with a thickness of 0.12-0.13 mm. Improved electromagnetic interference shielding efficiency was obtained in the 0.1-20 GHz frequency range. The initial assessment was done through XRD for the confirmation of the successful fabrication of nanoparticles and DC conductivity. The microstructure was analyzed with scanning electron microscopy. The EMI shielding was observed by incorporating a filler amount varying from 5 wt.% to 40 wt.% in three different frequency regions: microwave region (0.1 to 20 GHz), near-infrared (NIR) (700-2500 nm), and ultraviolet (UV) (200-400 nm). A maximum attenuation of 65 dB was observed with a 40% concentration of NiFe-TRGO in nanocomposite film.
In this study, cellulose acetate (CA) was blended with sulfonated graphene oxide (SGO) nanomaterials to endow a nanocomposite membrane for wastewater treatment with improved hydrophilicity and anti-biofouling behavior. The phase inversion method was employed for membrane fabrication using tetrahydrofuran (THF) as the solvent. The characteristics of CA-SGO-doped membranes were investigated through thermal analysis, contact angle, SEM, FTIR, and anti-biofouling property. Results indicated that anti-biofouling property and hydrophilicity of CA-SGO nanocomposite membranes were enhanced with addition of hydrophilic SGO nanomaterials in comparison to pristine CA membrane. FTIR analysis confirmed the successful decoration of SGO groups on CA membrane surface while revealing its morphological properties through SEM analysis. Thermal analysis performed using DSC confirmed the increase in thermal stability of CA-SGO membranes with addition of SGO content than pure CA membrane.
Abiotic stressors are major constraints that affect agricultural plant physio-morphological and biochemical attributes, resulting in a loss of normal functioning and, eventually, a severe decline in crop productivity. The co-occurrence of different abiotic stresses, rather than a specific stress situation, can alter or trigger a wide range of plant responses, such as altered metabolism, stunted growth, and restricted development. Therefore, systematic and rigorous studies are pivotal for understanding the impact of concurrent abiotic stress conditions on crop productivity. In doing so, this review emphasizes the implications and potential mechanisms for controlling/managing combined abiotic stresses, which can then be utilized to identify genotypes with combined stress tolerance. Furthermore, this review focuses on recent biotechnological approaches in deciphering combined stress tolerance in plants. As a result, agronomists, breeders, molecular biologists, and field pathologists will benefit from this literature in assessing the impact of interactions between combined abiotic stresses on crop performance and development of tolerant/resistant cultivars.