Number counts of galaxy clusters across redshift are a powerful cosmological probe, if a precise and accurate reconstruction of the underlying mass distribution is performed -- a challenge called mass calibration. With the advent of wide and deep photometric surveys, weak gravitational lensing by clusters has become the method of choice to perform this measurement. We measure and validate the weak gravitational lensing (WL) signature in the shape of galaxies observed in the first 3 years of the DES Y3 caused by galaxy clusters selected in the first all-sky survey performed by SRG/eROSITA. These data are then used to determine the scaling between X-ray photon count rate of the clusters and their halo mass and redshift. We empirically determine the degree of cluster member contamination in our background source sample. The individual cluster shear profiles are then analysed with a Bayesian population model that self-consistently accounts for the lens sample selection and contamination, and includes marginalization over a host of instrumental and astrophysical systematics. To quantify the accuracy of the mass extraction of that model, we perform mass measurements on mock cluster catalogs with realistic synthetic shear profiles. This allows us to establish that hydro-dynamical modelling uncertainties at low lens redshifts ($z<0.6$) are the dominant systematic limitation. At high lens redshift the uncertainties of the sources' photometric redshift calibration dominate. With regard to the X-ray count rate to halo mass relation, we constrain all its parameters. This work sets the stage for a joint analysis with the number counts of eRASS1 clusters to constrain a host of cosmological parameters. We demonstrate that WL mass calibration of galaxy clusters can be performed successfully with source galaxies whose calibration was performed primarily for cosmic shear experiments.
The spatial distribution of galaxy clusters provides a reliable tracer of the large-scale distribution of matter in the Universe. The clustering signal depends on intrinsic cluster properties and cosmological parameters. The ability of eROSITA onboard Spectrum-Roentgen-Gamma (SRG) to discover galaxy clusters allows probing the association of extended X-ray emission to dark matter haloes. We aim to measure the projected two-point correlation function to study the occupation of dark matter halos by clusters and groups detected by the first eROSITA all-sky survey (eRASS1). We create five volume-limited samples probing clusters with different redshift and X-ray luminosity. We interpret the correlation function with halo occupation distribution (HOD) and halo abundance matching (HAM) models. We simultaneously fit cosmological parameters and halo bias of a flux-limited sample of 6493 clusters with purity > 96%. Results. We obtain a detailed view of the halo occupation for eRASS1 clusters. The fainter population at low redshift (S0: LX = 4.63E43 erg/s, 0.1 < z < 0.2) is the least biased compared to dark matter, with b = 2.95 $\pm$ 0.21. The brightest clusters up to higher redshift (S4: LX = 1.77E44 erg/s , 0.1 < z < 0.6) exhibit a higher bias b = 4.34 $\pm$ 0.62. Satellite groups are rare, with a satellite fraction < 14.9% (8.1) for the S0 (S4) sample. We combine the HOD prediction with a HAM procedure to constrain the scaling relation between LX and mass in a new way and find a scatter of 0.36. We obtain cosmological constraints for the physical cold dark matter density 0.12+0.03-0.02 and an average halo bias b = 3.63+1.02-0.85. We model the clustering of galaxy clusters with a HOD approach for the first time, paving the way for future studies combining eROSITA with 4MOST, SDSS, Euclid, Rubin, and DESI to unravel the cluster distribution in the Universe.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian/German Spektrum-Roentgen-Gamma (SRG) mission which is now officially scheduled for launch on March 26, 2016. eROSITA will perform a deep survey of the entire X-ray sky. In the soft band (0.5-2 keV), it will be about 30 times more sensitive than ROSAT, while in the hard band (2-8 keV) it will provide the first ever true imaging survey of the sky. The design driving science is the detection of large samples of galaxy clusters to redshifts z < 1 in order to study the large scale structure in the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGN, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars and diffuse emission within the Galaxy. eROSITA is currently (June 2014) in its flight model and calibration phase. All seven flight mirror modules (+ 1 spare) have been delivered and measured in X-rays. The first camera including the complete electronics has been extensively tested (vacuum + X-rays). A pre-test of the final end-toend test has been performed already. So far, all subsystems and components are well within their expected performances.
The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5' equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ~5 arcsecond pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at about 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 microns. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of about 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a 3He sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (>50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018.
Context. The spatial distribution of galaxy clusters provides a reliable tracer of the large-scale distribution of matter in the Universe. The clustering signal depends on intrinsic cluster properties and cosmological parameters. Aims. The ability of eROSITA on board Spectrum-Roentgen-Gamma (SRG) to discover galaxy clusters allows the association of extended X-ray emission with dark matter haloes to be probed. We measured the projected two-point correlation function to study the occupation of dark matter haloes by clusters and groups detected by the first eROSITA all-sky survey (eRASS1). Methods. We created five volume-limited samples probing clusters with different redshifts and X-ray luminosity values. We interpreted the correlation function with halo occupation distribution (HOD) and halo abundance matching (HAM) models. We simultaneously fit the cosmological parameters and halo bias of a flux-limited sample of 6493 clusters with purity > 96%. Results. We obtained a detailed view of the halo occupation for eRASS1 clusters. The fainter population at low redshift (S0: L̄ X = 4.63 × 10 43 erg s −1 , 0.1 < z < 0.2) is the least biased compared to dark matter, with b = 2.95 ± 0.21. The brightest clusters up to higher redshift (S4: L̄ X = 1.77 × 10 44 erg s −1 , 0.1 < z < 0.6) exhibit a higher bias b = 4.34 ± 0.62. Satellite groups are rare, with a satellite fraction < 14.9% (8.1) for the S0 (S4) sample. We combined the HOD prediction with a HAM procedure to constrain the scaling relation between L X and mass in a new way, and find a scatter of ⟨ σ Lx ⟩ = 0.36. We obtain cosmological constraints for the physical cold dark matter density ω c = 0.12 −0.02 +0.03 and an average halo bias b = 3.63 −0.85 +1.02 . Conclusions. We modelled the clustering of galaxy clusters with a HOD approach for the first time, paving the way for future studies combining eROSITA with 4MOST, SDSS, Euclid , Rubin , and DESI to unravel the cluster distribution in the Universe.