Using Immunohistochemical techniques, olfactory marker protein (OMP) was localized to the main (MOB) and accessory (AOB) olfactory bulbs of 30− and 45-day-old, and adult Brazilian opossums, Monodelphis domestica. Entire olfactory nerve and glomerular layers of the adult opossum MOB were darkly stained. In the adult AOB the rostral half of these two layers was stained more intensely than the caudal half, and both parts were less darkly stained than the MOB. This differential AOB staining was not present at 30 days of age, but was evident by postnatal day 45, although not as dramatic as in adults. This is the first report of differential OMP expression and may provide an approach to identifying the function of OMP.
Abstract Wheat germ agglutinin (WGA) in a slow‐release polyacrylamide gel pellet was implanted in the medulla or spinal cord of the rat. Large numbers of retrogradely labeled cells were visualized by immunocytochemical procedures in specific nuclei of the forebrain mainly ipsilateral to the implant site following implants as far caudal as the sacral segments of the spinal cord. Total average number of labeled forebrain cells (three brains per category; 100 μm per 150 μm of brain tissue were examined microscopically): medulla, 2,115; cervical, 1,878; lumbar, 1,017; sacral, 385. After WGA‐gel implants in the medulla or cervical cord the majority of retrogradely labeled neurons were seen in the lateral hypothalamic area, the zona incerta, and in subdivisions, of the paraventricular nucleus. A continuum of labeled cells extended from the caudal part of the paraventricular nucleus into the posterior hypothalamus and into the central gray of the midbrain. Labeled cells were also seen in the medial basal hypothalamus and the rostral part of the bed nucleus of the stria terminalis. A few labeled cells were observed in the medial and lateral preoptic areas, the rostral part of the paraventricular nucleus, and in the arcuate nucleus. Following WGA‐gel implants in the lumbar or sacral cord many retrogradely labeled cells were observed mainly in the paraventricular nucleus, the lateral hypothalamus, zona incerta, medial basal hypothalamus, and posterior hypothalamic area. The continuum of labeled cells described above was also seen following these implants. Our data indicate that the lateral hypothalamus and zona incerta, as well as specific parts of the paraventricular nucleus, are major loci of neurons which project directly to the medulla and spinal cord of the rat. The consistency with which labeled cells were localized across all brains examined within categories of implant sites and the large numbers of labeled cells counted within these areas appeared to verify the sensitivity of our retrograde tracing method. Therefore, we interpret the paucity or absence of labeled cells in particular brain regions to indicate that cells of these regions do not project to the medulla or spinal cord.
Immunoreactive LHRH-like material has been found in the cells and fibers of the nervus terminalis in fetal and adult guinea pig brains. LHRH-containing neurons and axons are seen in the nasal mucosa intermingled with fibers of the olfactory nerves, in ganglia along the ventromedial surfaces of the olfactory bulbs and forebrain, and in clusters surrounding perforating branches of the anterior cerebral artery in the regions of the septal nuclei and olfactory tubercle. Nonreactive neurons are found adjacent to the LHRH-positive cells in all of the ganglia. LHRH-immunoreactive cells and axons of the nervus terminalis are in intimate contact with cerebral blood vessels and the cerebrospinal fluid along the intracranial course of this nerve, deep to the meninges. The possible involvement of these structures in the neural mechanisms of sexual behavior and the neurohormonal regulation of reproductive function are discussed.
Immunoreactive luteinizing hormone-releasing hormone (LHRH) was first detected at 15 days of gestation in ganglion cells associated with the peripheral, intracranial, and central parts of the nervus terminalis of the rat. LHRH was not detected in any other structure of the central nervous system at this age. In the 17-day-old fetal rat, 62% of the total LHRH-reactive neuronal population was found in ganglion cells of the nervus terminalis. At this same age, immunoreactive beta-luteinizing hormone (beta-LH) was first seen in gonadotropes of the anterior pituitary gland. At 19 days of gestation, 31% of the total number of LHRH-reactive neurons observed in the rat brain was found in the nervus terminalis, and immunoreactive processes were first seen in the organum vasculosum of the lamina terminalis and in the median eminence. Our data indicate that from 15 to 19 days of gestation the nervus terminalis is a principal source of LHRH in the fetal rat. Presence of the decapeptide in the nervus terminalis prior to appearance of beta-LH in the anterior pituitary suggests a possible role for LHRH in this system on maturation of the gonadotropes and differentiation of the brain-pituitary-gonadal axis.