Abstract Introduction Prognostication of outcome in severe stroke patients necessitating invasive mechanical ventilation poses significant challenges. The objective of this study was to assess the prognostic significance and prevalence of early electroencephalogram (EEG) abnormalities in adult stroke patients receiving mechanical ventilation. Methods This study is a pre-planned ancillary investigation within the prospective multicenter SPICE cohort study (2017–2019), conducted in 33 intensive care units (ICUs) in the Paris area, France. We included adult stroke patients requiring invasive mechanical ventilation, who underwent at least one intermittent EEG examination during their ICU stay. The primary endpoint was the functional neurological outcome at one year, determined using the modified Rankin scale (mRS), and dichotomized as unfavorable (mRS 4–6, indicating severe disability or death) or favorable (mRS 0–3). Multivariable regression analyses were employed to identify EEG abnormalities associated with functional outcomes. Results Of the 364 patients enrolled in the SPICE study, 153 patients (49 ischemic strokes, 52 intracranial hemorrhages, and 52 subarachnoid hemorrhages) underwent at least one EEG at a median time of 4 (interquartile range 2–7) days post-stroke. Rates of diffuse slowing (70% vs. 63%, p = 0.37), focal slowing (38% vs. 32%, p = 0.15), periodic discharges (2.3% vs. 3.7%, p = 0.9), and electrographic seizures (4.5% vs. 3.7%, p = 0.4) were comparable between patients with unfavorable and favorable outcomes. Following adjustment for potential confounders, an unreactive EEG background to auditory and pain stimulations (OR 6.02, 95% CI 2.27–15.99) was independently associated with unfavorable outcomes. An unreactive EEG predicted unfavorable outcome with a specificity of 48% (95% CI 40–56), sensitivity of 79% (95% CI 72–85), and positive predictive value (PPV) of 74% (95% CI 67–81). Conversely, a benign EEG (defined as continuous and reactive background activity without seizure, periodic discharges, triphasic waves, or burst suppression) predicted favorable outcome with a specificity of 89% (95% CI 84–94), and a sensitivity of 37% (95% CI 30–45). Conclusion The absence of EEG reactivity independently predicts unfavorable outcomes at one year in severe stroke patients requiring mechanical ventilation in the ICU, although its prognostic value remains limited. Conversely, a benign EEG pattern was associated with a favorable outcome.
Rationale: Whether patients with coronavirus disease (COVID-19) may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. Objectives: To estimate the effect of ECMO on 90-day mortality versus IMV only. Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO versus no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 < 80 or PaCO2 ⩾ 60 mm Hg). We controlled for confounding using a multivariable Cox model on the basis of predefined variables. Measurements and Main Results: A total of 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability on Day 7 from the onset of eligibility criteria (87% vs. 83%; risk difference, 4%; 95% confidence interval, 0–9%), which decreased during follow-up (survival on Day 90: 63% vs. 65%; risk difference, −2%; 95% confidence interval, −10 to 5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand and when initiated within the first 4 days of IMV and in patients who are profoundly hypoxemic. Conclusions: In an emulated trial on the basis of a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and regions with ECMO capacities specifically organized to handle high demand.
Abstract Background Delaying time to prone positioning (PP) may be associated with higher mortality in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19). We evaluated the use and the impact of early PP on clinical outcomes in intubated patients hospitalized in intensive care units (ICUs) for COVID-19. Methods All intubated patients with ARDS due to COVID-19 were involved in a secondary analysis from a prospective multicenter cohort study of COVID-ICU network including 149 ICUs across France, Belgium and Switzerland. Patients were followed-up until Day-90. The primary outcome was survival at Day-60. Analysis used a Cox proportional hazard model including a propensity score. Results Among 2137 intubated patients, 1504 (70.4%) were placed in PP during their ICU stay and 491 (23%) during the first 24 h following ICU admission. One hundred and eighty-one patients (36.9%) of the early PP group had a PaO 2 /FiO 2 ratio > 150 mmHg when prone positioning was initiated. Among non-early PP group patients, 1013 (47.4%) patients had finally been placed in PP within a median delay of 3 days after ICU admission. Day-60 mortality in non-early PP group was 34.2% versus 39.3% in the early PP group ( p = 0.038). Day-28 and Day-90 mortality as well as the need for adjunctive therapies was more important in patients with early PP. After propensity score adjustment, no significant difference in survival at Day-60 was found between the two study groups (HR 1.34 [0.96–1.68], p = 0.09 and HR 1.19 [0.998–1.412], p = 0.053 in complete case analysis or in multiple imputation analysis, respectively). Conclusions In a large multicentric international cohort of intubated ICU patients with ARDS due to COVID-19, PP has been used frequently as a main treatment. In this study, our data failed to show a survival benefit associated with early PP started within 24 h after ICU admission compared to PP after day-1 for all COVID-19 patients requiring invasive mechanical ventilation regardless of their severity.
To evaluate the respective impact of standard oxygen, high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) on oxygenation failure rate and mortality in COVID-19 patients admitted to intensive care units (ICUs). Multicenter, prospective cohort study (COVID-ICU) in 137 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, oxygenation failure, and survival data were collected. Oxygenation failure was defined as either intubation or death in the ICU without intubation. Variables independently associated with oxygenation failure and Day-90 mortality were assessed using multivariate logistic regression. From February 25 to May 4, 2020, 4754 patients were admitted in ICU. Of these, 1491 patients were not intubated on the day of ICU admission and received standard oxygen therapy (51%), HFNC (38%), or NIV (11%) (P < 0.001). Oxygenation failure occurred in 739 (50%) patients (678 intubation and 61 death). For standard oxygen, HFNC, and NIV, oxygenation failure rate was 49%, 48%, and 60% (P < 0.001). By multivariate analysis, HFNC (odds ratio [OR] 0.60, 95% confidence interval [CI] 0.36-0.99, P = 0.013) but not NIV (OR 1.57, 95% CI 0.78-3.21) was associated with a reduction in oxygenation failure). Overall 90-day mortality was 21%. By multivariable analysis, HFNC was not associated with a change in mortality (OR 0.90, 95% CI 0.61-1.33), while NIV was associated with increased mortality (OR 2.75, 95% CI 1.79-4.21, P < 0.001). In patients with COVID-19, HFNC was associated with a reduction in oxygenation failure without improvement in 90-day mortality, whereas NIV was associated with a higher mortality in these patients. Randomized controlled trials are needed.
Abstract Background Previous retrospective research has shown that maintaining prone positioning (PP) for an average of 40 h is associated with an increase of survival rates in intubated patients with COVID-19-related acute respiratory distress syndrome (ARDS). This study aims to determine whether a cumulative PP duration of more than 32 h during the first 2 days of intensive care unit (ICU) admission is associated with increased survival compared to a cumulative PP duration of 32 h or less. Methods This study is an ancillary analysis from a previous large international observational study involving intubated patients placed in PP in the first 48 h of ICU admission in 149 ICUs across France, Belgium and Switzerland. Given that PP is recommended for a 16-h daily duration, intensive PP was defined as a cumulated duration of more than 32 h during the first 48 h, whereas standard PP was defined as a duration equal to or less than 32 h. Patients were followed-up for 90 days. The primary outcome was mortality at day 60. An Inverse Probability Censoring Weighting (IPCW) Cox model including a target emulation trial method was used to analyze the data. Results Out of 2137 intubated patients, 753 were placed in PP during the first 48 h of ICU admission. The intensive PP group ( n = 79) had a median PP duration of 36 h, while standard PP group ( n = 674) had a median of 16 h during the first 48 h. Sixty-day mortality rate in the intensive PP group was 39.2% compared to 38.7% in the standard PP group ( p = 0.93). Twenty-eight-day and 90-day mortality as well as the ventilator-free days until day 28 were similar in both groups. After IPCW, there was no significant difference in mortality at day 60 between the two-study groups (HR 0.95 [0.52–1.74], p = 0.87 and HR 1.1 [0.77–1.57], p = 0.61 in complete case analysis or in multiple imputation analysis, respectively). Conclusions This secondary analysis of a large multicenter European cohort of intubated patients with ARDS due to COVID-19 found that intensive PP during the first 48 h did not provide a survival benefit compared to standard PP.
Out-of-plane (OOP) approach is frequently used for ultrasound-guided insertion of central venous catheter (CVC) owing to its simplicity but does not avoid mechanical complication. In-plane (IP) approach might improve safety of insertion; however, it is less easy to master. We assessed, a homemade needle guide device aimed to improve CVC insertion using IP approach.We evaluated in a randomized simulation trial, the impact of a homemade needle guide on internal jugular, subclavian and femoral vein puncture, using three approaches: out-of-plane free hand (OOP-FH), in-plane free hand (IP-FH), and in-plane needle guided (IP-NG). Success at first pass, the number of needle redirections and arterial punctures was recorded. Time elapsed (i) from skin contact to first skin puncture, (ii) from skin puncture to successful venous puncture and (iii) from skin contact to venous return were measured.Thirty operators performed 270 punctures. IP-NG approach resulted in high success rate at first pass (jugular: 80%, subclavian: 95% and femoral: 100%) which was higher than success rate observed with OOP-FH and IP-FH regardless of the site (p = .01). Compared to IP-FH and OOP-FH, the IP-NG approach decreased the number of needle redirections at each site (p = .009) and arterial punctures (p = .001). Compared to IP-FH, the IP-NG approach decreased the total procedure duration for puncture at each site.In this simulation study, IP approach using a homemade needle guide for ultrasound-guided central vein puncture improved success rate at first pass, reduced the number of punctures/redirections and shortened the procedure duration compared to OOP and IP free-hand approaches.
Long-term outcomes of patients with severe stroke remain poorly documented. We aimed to characterize one-year outcomes of patients with stroke requiring mechanical ventilation in the intensive care unit (ICU).We conducted a prospective multicenter cohort study in 33 ICUs in France (2017-2019) on patients with consecutive strokes requiring mechanical ventilation for at least 24 hours. Outcomes were collected via telephone interviews by an independent research assistant. The primary end point was poor functional outcome, defined by a modified Rankin Scale score of 4 to 6 at 1 year. Multivariable mixed models investigated variables associated with the primary end point. Secondary end points included quality of life, activities of daily living, and anxiety and depression in 1-year survivors.Among the 364 patients included, 244 patients (66.5% [95% CI, 61.7%-71.3%]) had a poor functional outcome, including 190 deaths (52.2%). After adjustment for non-neurological organ failure, age ≥70 years (odds ratio [OR], 2.38 [95% CI, 1.26-4.49]), Charlson comorbidity index ≥2 (OR, 2.01 [95% CI, 1.16-3.49]), a score on the Glasgow Coma Scale <8 at ICU admission (OR, 3.43 [95% CI, 1.98-5.96]), stroke subtype (intracerebral hemorrhage: OR, 2.44 [95% CI, 1.29-4.63] versus ischemic stroke: OR, 2.06 [95% CI, 1.06-4.00] versus subarachnoid hemorrhage: reference) remained independently associated with poor functional outcome. In contrast, a time between stroke diagnosis and initiation of mechanical ventilation >1 day was protective (OR, 0.56 [95% CI, 0.33-0.94]). A sensitivity analysis conducted after exclusion of patients with early decisions of withholding/withdrawal of care yielded similar results. We observed persistent physical and psychological problems at 1 year in >50% of survivors.In patients with severe stroke requiring mechanical ventilation, several ICU admission variables may inform caregivers, patients, and their families on post-ICU trajectories and functional outcomes. The burden of persistent sequelae at 1 year reinforces the need for a personalized, multi-disciplinary, prolonged follow-up of these patients after ICU discharge.URL: https://www.gov; Unique identifier: NCT03335995.