The Ordos Basin, as the second largest petroliferous basin of China, contains abundant oil and gas resources, oil shale, and sandstone‐type uranium mineral resources. Chang 7 shale is not only the major source rock of the Mesozoic petroliferous system of the Basin, but is also crucial in determining the space‐time distribution relationship of the shale section for the effective exploration and development of the Basin's oil and gas resources. To obtain a highly precise age of the shale development section, we collected tuff samples from the top and bottom profile of the Chang 7 Member, Yishi Village, Yaoqu Town, Tongchuan District, on the southern margin of the Ordos Basin and performed high‐precision chemical abrasion (CA)–isotope dilution (ID)–thermal ionization mass spectrometry (TIMS) zircon U‐Pb dating on the basis of extensive laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) zircon U‐Pb dating data. Our results show the precise ages of the top and bottom zircon in the Chang 7 shale to be 241.06±0.12 Ma and 241.558±0.093 Ma, respectively. We first obtained Chang 7 age data with Grade 0.1‐Ma precision and then determined the age of the shale development in the Chang 7 Member to be the early‐Middle Triassic Ladinian. This result is supported by paleontological evidence. The deposition duration of the Chang 7 shale is 0.5Ma with an average deposition rate of the shale section being 5.3 cm/ka. Our research results provide time scale and basic data for further investigation of the basin–mountain coupling relation of the shale section, the sedimentary environment and volcanic ash and organic‐matter‐rich shale development relation, and the organism break‐out and organic‐matter enrichment mechanism.
AbstractIn this study, an innovative breakthrough pressure detection system for shale oil is introduced. Experiments were conducted on source rocks from three main rock types in the upper member of the Lower Ganchaigou Formation in the Western Qaidam depression, in Qinghai, China. The results show that the differences between the breakthrough pressures of laminated calcareous mudstone (LCM), siltstone (SS), and massive mixed mudstone (MMM) in the formation are of several orders of magnitude. In particular, the shale oil breakthrough pressure of laminated calcareous mudstone is more than five times greater in the vertical bedding direction than in the horizontal bedding direction. As black medium shale oil turns into yellow light shale oil, the breakthrough pressures in the same lithology and direction are reduced by two-thirds. In laminated mudstone the horizontal breakthrough pressure is lower than the vertical, while in massive mixed mudstone the vertical breakthrough pressure is lower. A composite migration model for shale oil in hybrid strata—horizontal migration along bedding and vertical migration through micro-fractures—is proposed. The results are of great significance for understanding the accumulation of shale oil and for identifying exploration targets.Keywords: accumulation and anisotropybreakthrough conditions constraintsgeological Hybrid lacustrine migration modelshale oilpressurerocksedimentary shale source
The origin of the organic-rich shale in the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation is complex and controversial. This paper reports the geochemical data of Wufeng-Longmaxi Formations in the Upper Yangtze region to restore the paleoenvironment and explore the accumulation mechanism of organic matter. The total organic carbon (TOC) content of the Wufeng Formation was relatively high, with an average of 2.86%. The Lower Longmaxi Formation showed the highest TOC content, with an average of 3.99%, and the upper part was a continuously low value with an average of 1.22%. The paleoproductivity proxies (Babio, Cu/Al, Ni/Al, Siexcess) showed that in the Katian and Rhuddanian-Aeronian Stages, the Upper Yangtze Sea had high primary productivity, indicating that organic matter accumulation was more affected by terrigenous influx and redox conditions. Al, Zr, and Zr/Al indicated that terrigenous influx was relatively high in the Kaitian-Hirnantian Stages, it was at a constant low in the Rhuddanian Stage, and increased again in the Aeronian Stage. The correlations between redox-sensitive trace elements (Mo, U, V) and TOC indicate that the organic-rich shale of the Wufeng Formation was deposited in the anoxic–euxinic environment. In the Longmaxi Formation, organic-rich shales formed in a more hypoxic environment, and overlying organic-lean shales formed in a suboxic environment. Therefore, the anoxic–euxinic conditions of the Late Ordovician Yangtze Sea were the main reason for the organic matter accumulation, but the high terrigenous influx caused by regression and/or structural controls diluted the organic matter to some extent. For the Early Silurian, a complete transgression–regression cycle changed terrigenous influx and redox conditions, resulting in significant differences in organic matter accumulation.
During the Mesozoic, the T-J1 oil system of the Ordos Basin, whilst the degree of oil enrichment, main production layer, and source rock distribution exhibit strong regional differences, no systematic study has been conducted to investigate these differences. At this time, the total organic carbon abundance and vertical distribution of the eight long core wells in different areas of the basin within the Chang 7 member source layers were calculated by means of the ΔLogR method. According to the industrial oil well and the low production well, the favorable oil distribution areas of the Chang 8, Chang 7, and Chang 6 reservoirs are demarcated. The current study confirmed five distribution styles and strong regional differences in the longitudinal direction of source rocks. To be more specific, the Jiyuan area in the northwestern part of the lake basin is dominated by the bottom rich type and the full section rich type. The northeastern Shaanxi region is mainly dominated by the middle rich type and the top rich type. Meanwhile, the central area of the basin is mainly the interlayered type, and the southwestern Longdong region is mainly the bottom rich type. The comprehensive analysis of source rock type and oil favorable zone revealed that source rock type has a controlling effect on the crude oil distribution. The bottom rich type and full section rich type dominate the Jiyuan area and multiple layer oil production. In northern Shaanxi, the top rich type and middle rich type accumulate on the upper portion. Also, the Chang 6 reservoir was the main production layer. The bottom rich type of the Longdong area accumulates under the source, while the Chang 8 reservoir is the main production layer. The central parts of the lake basin are dominated by the interlayered type with multiple layers of production oil. The close relationship between the distribution pattern of source rocks and oil accumulation indicates an improvement on the distribution law of the continental lake with significance practical implication on the optimization of the field of near-source-in-source oil and gas exploration.
Based on the investigation of tight oil exploration and development in North America, the successful cases of tight oil exploration and development in North America are summarized. The geological differences between continental tight oil in China and marine tight oil in North America is analyzed to explore the technical strategies for the industrial development of continental tight oil in China. The experiences of large-scale exploration and profitable development of tight oil in North America can be taken as references from the following 6 perspectives, namely exploring new profitable strata in mature exploration areas, strengthening the economic evaluation of sweet spots and focusing on the investment for high-profitability sweet spots, optimizing the producing of tight oil reserves by means of repetitive fracturing and 3D fracturing, optimizing drilling and completion technologies to reduce the cost, adopting commodity hedging to ensure the sustainable profit, and strengthening other resources exploration to improve the profit of whole project. In light of the high abundance of tight oil in China, we can draw on successful experience from North America, four suggestions are proposed in sight of the geological setting of China's lacustrine tight oil: (1) Evaluating the potential of tight oil resources and optimizing the strategic area for tight oil exploration; (2) selecting "sweet spot zone" and "sweet spot interval" accurately for precise and high efficient development; (3) adopting advanced tight oil fracturing technology to realize economic development; (4) innovating management system to promote the large-scale profitable development of tight oil.
With low mature Triassic Chang 7 Member shale samples from the Ordos Basin as study object, the 3-D porosity evolution with temperature increase and its main controlling factors are analyzed based on the physical modeling under high temperature & pressure and nano-CT scanning data. More and more nano-pores were developed in Chang 7 Member organic-rich shale with the increase of maturity. The porosity calculated from the nano-CT scanning model increased from 0.56% to 2.06%, more than 250% times larger, when temperature increased from 20 °C to 550 °C. The process of porosity evolution can be divided into three phases. Firstly, porosity decreased rapidly from immature to low mature stage because of weak hydrocarbon generation and strong compaction; Secondly, porosity increased rapidly when the maturity increased from low mature stage to mature and post-mature stage, organic matter cracked into hydrocarbon (HC) massively, and clay minerals transformed intensively; Thirdly, porosity system kept stable when the shale entered into post-mature stage and the intensity of both HC generation and clay mineral transformation decreased. Organic matter thermal evolution, clay mineral transformation and brittle mineral transformation make different contribution to the porosity of shale, and the ratio is 6:3:1 respectively. It is inferred abundant organic matter pores occur when Ro is over 1.2%.
The kinetic parameters of hydrocarbon generation are determined through experimental simulation and mathematical calculation using four typical samples selected from the Cretaceous Nenjiang Formation in the northwest of Songliao Basin, Chang 7 Member of Triassic Yanchang Formation in the southwest of Ordos Basin, Paleogene in the southwest of Qaidam Basin, and Lucaogou Formation of Jimusar Sag in the east of Junggar Basin. The results show that activation energy of hydrocarbon generation of organic matter is closely related to maturity and mainly ranges between 197 kJ/mol and 227 kJ/mol. On this basis, the temperature required for organic matter in shale to convert into oil was calculated. The ideal heating temperature is between 270 °C and 300 °C, and the conversation rate can reach 90% after 50—300 days of heating at constant temperature. When the temperature rises at a constant rate, the temperature corresponding to the major hydrocarbon generation period ranges from 225 to 350 °C at the temperature rise rate of 1—150 °C/month. In order to obtain higher economic benefits, it is suggested to adopt higher temperature rise rate (60—150 °C/month). The more reliable kinetic parameters obtained can provide a basis for designing more reasonable scheme of in-situ heating conversion.