The objective of this study is to identify a procedure for determining sample size allocation for food radiation inspections of more than one food item to minimize the potential risk to consumers of internal radiation exposure. We consider a simplified case of food radiation monitoring and safety inspection in which a risk manager is required to monitor two food items, milk and spinach, in a contaminated area. Three protocols for food radiation monitoring with different sample size allocations were assessed by simulating random sampling and inspections of milk and spinach in a conceptual monitoring site. Distributions of 131 I and radiocesium concentrations were determined in reference to 131 I and radiocesium concentrations detected in Fukushima prefecture, Japan, for March and April 2011. The results of the simulations suggested that a protocol that allocates sample size to milk and spinach based on the estimation of 131 I and radiocesium concentrations using the apparent decay rate constants sequentially calculated from past monitoring data can most effectively minimize the potential risks of internal radiation exposure.
To harvest energy from chemical reactions, microbes engage in diverse catabolic interactions that drive material cycles in the environment. Here, we consider a simple mathematical model for cycling reactions between alternative forms of an element (A and Ae), where reaction 1 converts A to Ae and reaction 2 converts Ae to A. There are two types of microbes: type 1 microbes harness reaction 1, and type 2 microbes harness reaction 2. Each type receives its own catabolic resources from the other type and provides the other type with the by-products as the catabolic resources. Analyses of the model show that each type increases its steady-state abundance in the presence of the other type. The flux of material flow becomes faster in the presence of microbes. By coupling two catabolic reactions, types 1 and 2 can also expand their realized niches through the abundant resource premium, the effect of relative quantities of products and reactants on the available chemical energy, which is especially important for microbes under strong energetic limitations. The plausibility of mutually beneficial interactions is controlled by the available chemical energy (Gibbs energy) of the system. We conclude that mutualistic catabolic interactions can be an important factor that enables microbes in subsurface ecosystems to increase ecosystem productivity and expand the ecosystem.
Observational evidence supports the presence of methane (CH4) in the martian atmosphere on the order of parts per billion by volume (ppbv). Here, we assess whether aerobic methanotrophy is a potentially viable metabolism in the martian upper regolith, by calculating metabolic energy gain rates under assumed conditions of martian surface temperature, pressure, and atmospheric composition. Using kinetic parameters for 19 terrestrial aerobic methanotrophic strains, we show that even under the imposed low temperature and pressure extremes (180-280 K and 6-11 hPa), methane oxidation by oxygen (O2) should in principle be able to generate the minimum energy production rate required to support endogenous metabolism (i.e., cellular maintenance). Our results further indicate that the corresponding metabolic activity would be extremely low, with cell doubling times in excess of 4000 Earth years at the present-day ppbv-level CH4 mixing ratios in the atmosphere of Mars. Thus, while aerobic methanotrophic microorganisms similar to those found on Earth could theoretically maintain their vital functions, they are unlikely to constitute prolific members of hypothetical martian soil communities.
Abstract Nitrogen species often serve as crucial electron donors or acceptors in microbial catabolism, enabling the synthesis of adenosine triphosphate (ATP). Although theoretically any nitrogen redox reactions could be an energy source, it remains unclear why specific reactions are predominantly utilized. This study evaluates energetically superior reactions from 988 theoretically plausible combinations involving 11 nitrogen species, oxygen gas, hydrogen ion, and water. Our analysis of the similarity between this model-based energetically superior network and the actual microbial community-level nitrogen network, reconstructed as a combination of enzymatic reactions, showed increased link overlap rates with thermodynamic weighting on reaction rates. In particular, existing microbial reactions involving solely nitrogen species and additionally oxygen, such as anaerobic ammonia oxidation (ANAMMOX) and complete and partial nitrification, were frequently identified as energetically superior among the examined reactions. The alignment of these reactions with thermodynamically favorable outcomes underscores the critical role of thermodynamics not only in individual metabolic processes but also in shaping the broader network interactions within ecosystems, consequently affecting biodiversity and ecological functions. Significance Statement This study advances our understanding of how thermodynamics governs energy metabolism at the community level within microbial ecosystems by systematically analyzing 988 potential redox reactions involving inorganic nitrogen species, oxygen gas, hydrogen ion, and water. We uncover that existing microbial reactions, such as anaerobic ammonia oxidation (ANAMMOX) and nitrification, stand out as energetically superior over other examined reactions. The robust alignment between model-predicted energetically favorable reactions and actual microbial nitrogen reactions underscores the predictive power of thermodynamic principles, even in ecological networks. Our findings extend the traditional applications of thermodynamics in biology, highlighting how thermodynamic constraints shape ecological networks and influence biodiversity and ecosystem functions in natural ecosystems.
Abstract A significant portion of the Earth’s biodiversity and biomass is from the subsurface biosphere, where chemotrophic microbial species harness diverse inorganic oxidation-reduction reactions (redox reactions) as a major source of metabolic energy while driving biogeochemical cycles. Given the limited availability of energy in the anaerobic environment, a fundamental question concerns what interplay between the chemical environment and chemotrophic community enables the persistence of whole biogeochemical systems. Here, using a thermodynamics-based mechanistic model that maps the interplay between diverse chemotrophic species and chemical compounds onto a redox network, we show that cycles of redox reactions mediate chemotrophic interactions in a way that increases the complexity of both redox reaction networks and microbial communities and enhances the community-level efficiency of energy metabolism. The high efficiency and complexity of biogeochemical systems arises from the self-organised ecological niche segmentation of microbes. More specifically, a consortium of chemotrophic species that subdivide a long-reaction pathway into shorter-reaction segments enhance each other’s population growth, replaces the species that monopolises the long-reaction pathway, and increases ecosystem productivity. An ecologically driven ‘division of metabolic labour’ in the chemotrophic community provides a novel mechanism through which an intimate life-environment interplay concurrently enhances biodiversity and ecosystem productivity.
ABSTRACT Nitrogen compounds often serve as crucial electron donors and acceptors in microbial energy metabolism, playing a key role in biogeochemical cycles. The energetic favorability of nitrogen oxidation–reduction (redox) reactions, driven by the thermodynamic properties of these compounds, may have shaped the evolution of microbial energy metabolism, though the extent of their influence remains unclear. This study quantitatively evaluated the similarity between energetically superior nitrogen reactions, identified from 988 theoretically plausible reactions, and the nitrogen community‐level network, reconstructed as a combination of enzymatic reactions representing intracellular to interspecies‐level reaction interactions. Our analysis revealed significant link overlap rates between these networks. Notably, composite enzymatic reactions aligned more closely with energetically superior reactions than individual enzymatic reactions. These findings suggest that selective pressure from the energetic favorability of redox reactions can operate primarily at the species or community level, underscoring the critical role of thermodynamics in shaping microbial metabolic networks and ecosystem functioning.