The traditional wheel loader is built without any axle suspension and experiences severe vibration. Three different layouts of hydropneumatic suspension, namely, unconnected strut (UCS), interconnected in roll plane (IC-R) and interconnected in roll and pitch plane (IC-RP), are installed on the wheel loader to improve ride comfort. This study mainly focuses on the damping effect of different layouts of suspensions and investigates whether the suspensions will affect the driving and operation stability of the wheel loader. The multibody model of the wheel loader with hydropneumatic suspension is developed by RecurDyn in co-simulation with MATLAB/Simulink. Detailed analysis was performed as the wheel loader was traveling on a C-class road, turning on a flat road, and scooping and unloading crushed rocks. Results showed that (1) the three layouts of suspensions can greatly reduce the vector sum of weighted acceleration; (2) the UCS suspension affects both the driving and operation stability of the wheel loader, and the IC-R suspension affects the operation stability when the wheel loader scoops and unloads crushed rocks, (3) the IC-RP suspension with anti-roll and anti-pitch functions has little effect on the driving and operation stability of the wheel loader.
The mechanism of growth of one of the competitive topologies for covalent organic frameworks with constitutional isomers is poorly understood. Herein, we employ molecular dynamics to study the isoenergetic assembly of the rhombic square (sql) and Kagome lattice (kgm). The concentration, solvent conditions, and the reversibility of chemical reactions are considered by means of an Arrhenius two-state model to describe the reactions. High concentrations and poor solvent both result in sql, agreeing well with recent experiments. Moreover, the high reversibility of reactions gives rise to sql, while the low reversibility leads to kgm, suggesting a new way of regulating the topology. Our analyses support that the nucleation of isomers influenced by experimental conditions is responsible for the selection of topologies, which improves understanding of the control of topology. We also propose a strategy in which a two-step growth can be exploited to greatly improve the crystallinity of kgm.
We demonstrate that polymer number distribution (PND) for polymer grafted nanoparticles (NPs) fabricated via the grafting-to technique can be described, without any fitting parameters, as a function of the conversion of polymer chains. This distribution function is convenient to be applied since the variables in PND are directly linked to experimental measurements and easy to be obtained. As an independent validation, the molecular dynamics simulation in this study is important since the experimental approach may be prone to artifacts that result from the complex parameters. This distribution is further generalized to describe the PNDs for polymer grafted NPs fabricated via the grafting-from technique. Our study implies that the grafting process, no matter grafting-to or grafting-from, does not alter the heterogeneity. Our results also provide evidence that the Poisson model, often invoked to describe the PND in previous experiments, is not accurate. We also show that the binomial form function of PND will not break down even in the cases of relatively large polymer chain length, high binding site density, and high polymer concentration. This function is quite effective since it naturally involves most influencing factors through polymer chain conversion. This study helps to better understand the ligand chain number distribution for polymer-grafted NPs fabricated via both grafting-to and grafting-from techniques.
Vehicles are developing in the direction of energy-saving and electrification. suspension has been widely developed in the field of vehicles as a key component. Traditional hydraulic energy-supply suspensions dissipate vibration energy as waste heat to suppress vibration. This part of the energy is mainly generated by the vehicle engine. In order to effectively utilize the energy of this part, the energy-regenerative suspension with energy recovery converts the vibrational energy into electrical energy as the vehicle’s energy supply equipment. This article reviews the hydraulically powered suspension of vehicles with energy recovery. The importance of such suspension in vehicle energy recovery is analyzed. The main categories of energy-regenerative suspension are illustrated from different energy recovery methods, and the research status of hydraulic energy-regenerative suspension is comprehensively analyzed. Important factors that affect the shock-absorbing and regenerative characteristics of the suspension system are studied. In addition, some unresolved challenges are also proposed, which provides a reference value for the development of energy-regenerative suspension systems for hybrid new energy vehicles