We explored the feasibility of collecting convalescent plasma for passive immunotherapy of Middle East respiratory syndrome coronavirus (MERS-CoV) infection by using ELISA to screen serum samples from 443 potential plasma donors: 196 patients with suspected or laboratory-confirmed MERS-CoV infection, 230 healthcare workers, and 17 household contacts exposed to MERS-CoV. ELISA-reactive samples were further tested by indirect fluorescent antibody and microneutralization assays. Of the 443 tested samples, 12 (2.7%) had a reactive ELISA result, and 9 of the 12 had reactive indirect fluorescent antibody and microneutralization assay titers. Undertaking clinical trials of convalescent plasma for passive immunotherapy of MERS-CoV infection may be feasible, but such trials would be challenging because of the small pool of potential donors with sufficiently high antibody titers. Alternative strategies to identify convalescent plasma donors with adequate antibody titers should be explored, including the sampling of serum from patients with more severe disease and sampling at earlier points during illness.
We have systematically evaluated a dry-format, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay developed by Tetracore Inc. for the Cepheid SmartCycler platform to facilitate rapid diagnosis of dengue virus infections. A panel of related flaviviruses was used to evaluate the clinical specificity of the assay, and it was found to be specific to dengue. Eighty-one clinical samples previously confirmed dengue positive by virus isolation, along with 25 dengue negative control specimens were used to validate this new diagnostic assay. Using these clinical samples, the assay exhibited 98.77% sensitivity and 100% specificity. Over 85% of the clinical specimen exhibited viral loads ranging from 10(3) to 10(7) plaque-forming units per milliliter (PFU/mL). In addition, this dry-format assay is stable at ambient temperatures and requires minimal technical expertise to perform in a small thermocycler platform. These characteristics make it a promising candidate for diagnosis of dengue in mobile laboratories in the field.
The goal of this study was to determine, for each of four dengue serotypes, whether owl monkeys (Aotus nancymae) become viremic and develop antibody responses in patterns similar to those seen in humans and whether any behavioral parameters are reliably associated with immunologic responses. A secondary goal was to investigate effects of chronic blood sampling on hematologic parameters in this genus. We inoculated 20 owl monkeys with 2 x 10(4) plaque-forming units of one of four dengue serotypes. Blood samples ranging from 0.4 to 0.7 ml per animal were taken each day for 12 consecutive days after inoculation, as well as on days 21, 28, and 60 post-inoculation. The total amount of blood taken per monkey was 8.0 ml during the first 12 days and 9.5 ml during the first 30 days of the study (i.e., up to 17% total blood volume per week and up to 20% total blood volume per month). Detailed behavioral assessments of all animals were made twice daily on every day of sample collection. The dengue-1 group were viremic for an average of 3.75 days. Dengue-2, -3, and -4 groups had average viremias of 1.00, 1.25, and 1.33 days, respectively. All animals demonstrated appropriate antibody responses as determined by enzyme-linked immunosorbency assay (ELISA). Animals tolerated repeated phlebotomy well, as all animals remained within clinically normal hematocrit (HCT) reference ranges, and no lasting effects on HCT occurred in any monkey. Final HCT for most animals was greater than 45% (mean final hematocrit, 45%). The maximum decrease in HCT ranged from 3.5 to 19 (mean, 8.9) percentage points. No consistent correlation of any behavioral disease parameters with viremia and antibody status was demonstrated, although overt illness did occur in two animals. Aotus can be an affordable and safe model for testing dengue vaccine efficacy; further testing with higher doses of dengue-2, -3 and -4 viruses is warranted.
Dengue fever, caused by dengue viruses (DENV 1-4) is a leading cause of illness and death in the tropics and subtropics. Therefore, an effective vaccine is urgently needed. Currently, the only available licensed dengue vaccine is a chimeric live attenuated vaccine that shows varying efficacy depending on serotype, age and baseline DENV serostatus. Accordingly, a dengue vaccine that is effective in seronegative adults, children of all ages and in immunocompromised individuals is still needed. We are currently researching the use of psoralen to develop an inactivated tetravalent dengue vaccine. Unlike traditional formalin inactivation, psoralen inactivates pathogens at the nucleic acid level, potentially preserving envelope protein epitopes important for protective anti-dengue immune responses. We prepared highly purified monovalent vaccine lots of formalin- and psoralen-inactivated DENV 1-4, using Capto DeVirS and Capto Core 700 resin based column chromatography. Tetravalent psoralen-inactivated vaccines (PsIV) and formalin-inactivated vaccines (FIV) were prepared by combining the four monovalent vaccines. Mice were immunized with either a low or high dose of PsIV or FIV to evaluate the immunogenicity of monovalent as well as tetravalent formulations of each inactivation method. In general, the monovalent and tetravalent PsIVs elicited equivalent or higher titers of neutralizing antibodies to DENV than the FIV dengue vaccines and this response was dose dependent. The immunogenicity of tetravalent dengue PsIVs and FIVs were also evaluated in nonhuman primates (NHPs). Consistent with what was observed in mice, significantly higher neutralizing antibody titers for each dengue serotype were observed in the NHPs vaccinated with the tetravalent dengue PsIV compared to those vaccinated with the tetravalent dengue FIV, indicative of the importance of envelope protein epitope preservation during psoralen inactivation of DENV.
The hemagglutination-inhibition (HAI) assay is a critical component for measurement of immunogenicity in influenza vaccine development. It is unknown if the results can be influenced by sample type and anticoagulants. The purpose of this study was to evaluate the influence of different sample collection methods, in particular different anticoagulants, and choice of plasma or serum, on influenza virus serological assays. Blood samples from thirty donors previously immunized against influenza viruses were collected using six different types of blood collection tubes, two of which collect serum and four of which contain various anticoagulants for collecting plasma. Serum: (1) serum separator tubes (SST); and (2) Plus Plastic serum "red-top serum" tubes. Plasma: (3) spray-coated K2 ethylenediaminetetraacetic acid (EDTA) tubes: (4) Sodium Heparin tubes; (5) Citrate tubes with 3.2% sodium citrate solution; and (6) Glass Blood Collection tubes with acid citrate dextrose. Samples were tested against three different influenza viruses (A/California/07/2009 (H1N1pdm09), A/Texas/50/2012 (H3N2), and B/Massachusetts/2/2012) for hemagglutination inhibition titer and virus neutralization titer via a microneutralization (MN) assay, and data compared to that obtained for standard serum sample collected in SST. HAI and MN titers against type A viruses were within two dilutions compared to SST collection method over 96% of the time irrespective of sample type or anticoagulant. However, HAI titers for type B virus were more variable across different collection methods. EDTA plasma samples were greater than two dilutions higher than SST serum samples 70% (21 of 30 samples) of the time. In contrast, MN titers were within two dilutions over 96% of the time, with the highest deviation noted in acid citrate dextrose plasma samples (3 of 30 samples tested, 10%). These data provide useful guidelines for sample collection and serology testing when screening: (i) influenza vaccine immunogenicity antibody response; (ii) antibody responses to newly emerging viral strains; and (iii) clinical samples for anti-influenza antibody activity.
A tetravalent DNA vaccine for Dengue virus is under development but has not yet achieved optimal immunogenicity. Salivary glands vaccination has been reported efficacious in rodents and dogs. We report on a pilot study testing the salivary gland as a platform for a Dengue DNA vaccine in a non-human primate model.Four cynomolgus macaques were used in this study. Each macaque was pre-medicated with atropine and sedated with ketamine. Stensen's duct papilla was cannulated with a P10 polyethylene tube, linked to a 500ul syringe. On the first two infusions, all macaques were infused with 300ul of TVDV mixed with 2 mg of zinc. For the 3rd infusion, to increase transfection into salivary tissue, two animals received 100uL TVDV mixed with 400uL polyethylenimine 1μg/ml (PEI) and the other two animals received 500uL TVDV with zinc. Antibody titers were assessed 4 weeks following the second and third infusion.SGRI through Stensen's duct is a well-tolerated, simple and easy to reproduce procedure. TVDV infused into macaques salivary glands elicited a significantly weaker antibody response than with different delivery methods.
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus that causes low mortality but high morbidity rates in humans. In addition to natural outbreaks, there is the potential for exposure to VEEV via aerosolized virus particles. There are currently no FDA-licensed vaccines or antiviral therapies for VEEV. Passive immunotherapy is an approved method used to protect individuals against several pathogens and toxins. Human polyclonal antibodies (PAbs) are ideal, but this is dependent upon serum from convalescent human donors, which is in limited supply. Non-human-derived PAbs can have serious immunoreactivity complications, and when "humanized," these antibodies may exhibit reduced neutralization efficiency. To address these issues, transchromosomic (Tc) bovines have been created, which can produce potent neutralizing human antibodies in response to hyperimmunization. In these studies, we have immunized these bovines with different VEEV immunogens and evaluated the protective efficacy of purified preparations of the resultant human polyclonal antisera against low- and high-dose VEEV challenges. These studies demonstrate that prophylactic or therapeutic administration of the polyclonal antibody preparations (TcPAbs) can protect mice against lethal subcutaneous or aerosol challenge with VEEV. Furthermore, significant protection against unrelated coinfecting viral pathogens can be conferred by combining individual virus-specific TcPAb preparations.IMPORTANCE With the globalization and spread or potential aerosol release of emerging infectious diseases, it will be critical to develop platforms that are able to produce therapeutics in a short time frame. By using a transchromosomic (Tc) bovine platform, it is theoretically possible to produce antigen-specific highly neutralizing therapeutic polyclonal human antibody (TcPAb) preparations in 6 months or less. In this study, we demonstrate that Tc bovine-derived Venezuelan equine encephalitis virus (VEEV)-specific TcPAbs are highly effective against VEEV infection that mimics not only the natural route of infection but also infection via aerosol exposure. Additionally, we show that combinatorial TcPAb preparations can be used to treat coinfections with divergent pathogens, demonstrating that the Tc bovine platform could be beneficial in areas where multiple infectious diseases occur contemporaneously or in the case of multipathogen release.