Endosomal Toll-like receptors (TLR) such as TLR3, 7, 8 and 9 recognize pathogen associated nucleic acids. While DNA sequence does influence degree of binding to and activation of TLR9, it also appears to influence the ability of the ligand to reach the intracellular endosomal compartment. The KLK (KLKL5KLK) antimicrobial peptide, which is immunostimulatory itself, can translocate into cells without cell membrane permeabilization and thus can be used for endosomal delivery of TLR agonists, as has been shown with the IC31 formulation that contains an oligodeoxynucleotide (ODN) TLR9 agonist. We evaluated the adjuvant activity of KLK combined with CpG or non-CpG (GpC) ODN synthesized with nuclease resistant phosphorothioate (S) or native phosphodiester (O) backbones with ovalbumin (OVA) antigen in mice. As single adjuvants, CpG(S) gave the strongest enhancement of OVA-specific immunity and the addition of KLK provided no benefit and was actually detrimental for some readouts. In contrast, KLK enhanced the adjuvant effects of CpG(O) and to a lesser extent of GpC (S), which on their own had little or no activity. Indeed while CD8 T cells, IFN-γ secretion and humoral response to vaccine antigen were enhanced when CpG(O) was combined with KLK, only IFN-γ secretion was enhanced when GpC (S) was combined to KLK. The synergistic adjuvant effects with KLK/ODN combinations were TLR9-mediated since they did not occur in TLR9 knock-out mice. We hypothesize that a nuclease resistant ODN with CpG motifs has its own mechanism for entering cells to reach the endosome. For ODN without CpG motifs, KLK appears to provide an alternate mechanism for accessing the endosome, where it can activate TLR9, albeit with lower potency than a CpG ODN. For nuclease sensitive (O) backbone ODN, KLK may also provide protection from nucleases in the tissues.
Microbial infections trigger a multiplicity of responses in the host via innate immune sensors, including the Toll-like receptors (TLRs). TLR7 and TLR8, located in endosomes, detect pathogen-derived RNA, which can be mimicked by synthetic single-stranded oligoribonucleotides (ORNs). Detailed analysis of the immunostimulatory properties of numerous silencing RNAs (siRNAs) revealed that almost all tested siRNAs with a phosphodiester backbone actively stimulated cytokine production in human peripheral blood immune cells, but not all of them did contain previously described guanosine/uridine TLR7 or adenosine/uridine TLR8 motifs. By analysis of sequence variants of these siRNAs (as single- or double-strands), we were able to identify a new immunostimulatory, non-uridine-rich TLR7 motif that is present in many published siRNAs. Interestingly, the activity of this motif is dependent on the backbone chemistry. Phosphorothioate ORNs containing the motif did not stimulate immune activation, whereas phosphodiester ORNs of the same sequence induced a strong TLR7-biased immune response with high amounts of interferon-alpha. Using TLR7- and Myd88-deficient mice, we demonstrated that stimulation by ORNs containing this motif was TLR7 dependent. Our findings are of therapeutic relevance as this motif is present in many siRNA sequences and will to contribute to the immunostimulatory properties of unmodified siRNAs.
C1 esterase inhibitor (C1inh) is a major inhibitor of several pathways of inflammation in humans. In this study, we show that virulent-phase cultures of Bordetella pertussis, the etiological agent for whooping cough, but not other Bordetella species specifically recruit C1inh from human serum. Using a spontaneous mutant of B. pertussis that was deficient in C1inh binding, we demonstrate that the ability of B. pertussis to acquire high levels of human C1inh and wild-type levels of serum resistance are well correlated, suggesting that, in addition to and independent of BrkA expression, acquisition of C1inh is vital to B. pertussis resistance to complement-mediated killing.
Abstract Ag presentation to CD8+ T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (∼7 days), resistant mice (129×1SvJ) harbor a chronic infection lasting ∼60–90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8+ T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62LhighIL-7RαhighCD44high) CD8+ T cells. However, by day 14–21, majority of the primed CD8+ T cells display an effector phenotype (CD62LlowIL-7RαlowCD44high). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62LlowIL-7RαhighCD44high) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8+ T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8+ T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8+ T cell recognition, conferring a survival advantage to the pathogen.