An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
The confidence in an individual measurement is the most important factor when selecting the elemental formula candidates from the list of possible elemental compositions following an exact mass measurement. It is the single mass measurement capability rather than the averaged mass measurement potential of the mass spectrometer that is the critical factor when validating the exact mass measurements of small molecules. Here, an experimental protocol has been established to determine the frequency of exact mass measurement by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) at known relative ion abundance ratios (RA). This in turn allows for statements about the confidence limit for any single exact mass measurement to be made. This is particularly crucial for a high throughput, automated environment where operator intervention is required to be minimal and repeat analyses are to be avoided. The relative ion abundance calculations are essential to determine the working ranges for specific sample ion abundances. Further, it has been shown that if the sample ion abundance is low, then the ion abundance range for the calibration file does not need to be exactly or closely matched, again benefiting the high throughput application.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
<div class="section abstract"><div class="htmlview paragraph">There are many anthropogenic climate change mitigation strategies being adopted worldwide. One of these is the adoption of biodiesel FAME (Fatty Acid Methyl Ester), in transportation. The fuel has been widely promoted as replacement for petroleum diesel because of its potential benefits for life cycle greenhouse gas emissions, carbon dioxide reduction and particulate matter improvements.</div><div class="htmlview paragraph">Presently biodiesel may be made from a wide variety of starting materials, including food waste and agricultural materials such as vegetable oils and greases. The number and variety of possible starting materials continues to increase. Though, there is a limiting factor in the use of FAME, and that is cold weather operability. The regional climate can often influence FAME adoption with resultant economic and environmental implications. Often this cold temperature operability manifests itself as in vehicle fuel filter blocking. Several analytical protocols have been produced over the last few years to identify the chemicals in biodiesel that cause this problem.</div><div class="htmlview paragraph">However, the presence of petroleum hydrocarbons compromises many of these methods and others involve derivatization. Here we propose a protocol built around supercritical fluid chromatography mass spectrometry (SFC-MS) and Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) that has the flexibility to meet these challenges and allow the analysis of petroleum diesel/FAME blends and afford detection of the suspect compounds causing filter blocking under cold temperature</div></div>
Liquid chromatography-mass spectrometry methods were required to afford the rapid separation and detection of purines and small organic acids. These compounds are found in sweat and sebum and are potential biomarkers for the early detection of pressures sores. Two ultra-high-performance supercritical fluid chromatography-mass spectrometry assays have been successfully developed for both classes of compounds. Separation for purines was achieved using a gradient of supercritical carbon dioxide and methanol with a 1-aminoanthracene sub 2 μm particle size column followed by positive ion electrospray ionization. Separation for organic acids was achieved using a gradient of supercritical carbon dioxide and methanol (50 mM ammonium acetate 2% water) with a Diol sub 2 μm particle size column followed by negative ion electrospray ionization. Calibration curves were created in the absence of internal standards and R2 values > 0.96 were achieved using single ion monitoring methods for the protonated purines and the deprotonated acids. The two new assays afford rapid analytical methods for the separation and detection of potential biomarkers in human sweat leading to the early detection and prevention of pressure sores.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.