Predictive genetic testing in minors should be considered when clinical intervention is available. Children who carry a pathogenic variant for an inherited arrhythmia or cardiomyopathy require regular cardiac screening and may be prescribed medication and/or be told to modify their physical activity. Medical genetics and pediatric cardiology charts were reviewed to identify factors associated with uptake of genetic testing and cardiac evaluation for children at risk for long QT syndrome, hypertrophic cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy. The data collected included genetic diagnosis, clinical symptoms in the carrier parent, number of children under 18 years of age, age of children, family history of sudden cardiac arrest/death, uptake of cardiac evaluation and if evaluated, phenotype for each child. We identified 97 at risk children from 58 families found to carry a pathogenic variant for one of these conditions. Sixty six percent of the families pursued genetic testing and 73% underwent cardiac screening when it was recommended. Declining predictive genetic testing was significantly associated with genetic specialist recommendation (p < 0.001) and having an asymptomatic carrier father (p = 0.006). Cardiac evaluation was significantly associated with uptake of genetic testing (p = 0.007). This study provides a greater understanding of factors associated with uptake of genetic testing and cardiac evaluation in children at risk of an inherited arrhythmia or cardiomyopathy. It also identifies a need to educate families about the importance of cardiac evaluation even in the absence of genetic testing.
This work compares the methods of mutation detection via denaturing high-performance liquid chromatography (dHPLC) and a microchip-based heteroduplex analysis (HA) method. The mutations analyzed were 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 with, as additional examples, 188del11 and 5396 + 1G → A in BRCA1. Our HA method is based upon the use of a replaceable, highly denaturing sieving matrix that has dynamic coating capabilities, rendering our method relatively insensitive to contamination. We have found significant advantages in the microchip analysis in terms of reagent consumption, ease of use, versatility, simplicity of the protocol, the lack of constraints upon sample preparation or content, and the lack of parameters that need be adjusted. Although HA methods have a lower sensitivity than that of dHPLC, the electropherograms of the present HA method appear to provide more information and may allow mutations within the same amplicon to be distinguished. Although the dHPLC method has a remarkably high sensitivity, with this sensitivity there come constraints that may prevent it, in its present form, from being used in some applications, particularly those involving higher levels of integration. The advantages of the present HA method, along with recent developments in microchip-based single-nucleotide polymorphism (SNP) detection and high-throughput arrays, suggest that microchip-based systems could provide compact and integrated platforms capable of large-scale genotyping or mutational screening.
The Genetic Resource Center (GRC) is a centralized process for requesting genetic testing that is not available within the province (Alberta, Canada). In order to assess potential cost savings associated with this process, all applications received by the GRC in 2010 were reviewed, and cost savings were recorded for statistical analysis. Seven areas of cost savings were identified: (i) negotiated pricing, (ii) laboratory selection, (iii) testing setup in-province, (iv) duplicate testing, (v) inappropriate testing, (vi) sequential testing and (vii) testing offered within the province.The total test cost of the 615 applications submitted in 2010 without the GRC process would have been $766,783 (Canadian dollars). A total cost savings of $112,201 was achieved through the GRC, which represents 15% of the total cost of requested testing ($112,201/$766,783). This is the first study to examine areas of cost savings for genetic testing sent out-of-province. The greatest cost savings resulted from the areas of laboratory selection and negotiated pricing. A centralized process to manage out-of-province genetic test requests results in consistency in testing and significant cost savings.