UDP-Glucuronosyltransferases (UGTs) are classified into three subfamilies in mice: Ugt1a, 2b, and 2a. In the Ugt1a subfamily, Ugt1a1 and 1a6 appear to correspond to human UGT1A1 and 1A6. The mouse is an important animal for its use in investigations, but the substrate specificities of Ugt isoforms belonging to the 2b subfamily in mice remain largely unknown. To address this issue, we characterized the substrate specificity of all isoforms of the Ugt2b subfamily expressed in the mouse liver. The cDNAs of Ugt1a1, Ugt2a3, and all the Ugt2b isoforms expressed in the liver were reverse-transcribed from the total RNA of male FVB-mouse livers and then amplified. A baculovirus-Sf9 cell system for expressing each Ugt was established. Of all the Ugts examined, Ugt2b34, 2b36, and 2b37 exhibited the ability to glucuronidate morphine with Ugt2b36, the most active in this regard. Ugt1a1, but also Ugt2b34, 2b36, and 2b37 to a lesser extent, preferentially catalyzed the glucuronidation of 17β-estradiol on the 3-hydroxyl group (E3G). With these isoforms, E3G formation by Ugt1a1 was efficient; however, Ugt2b5 exhibited a preference for the 17β-hydroxyl group (E17G). Ugt2b1 and Ugt2a3 formed comparable levels of E3G and E17G. Ugt2b1 and 2b5 were the only isoforms involved in chloramphenicol glucuronidation. As Ugt2b36 is highly expressed in the liver, it is most likely that Ugt2b36 is a major morphine Ugt in mouse liver. Regarding E3G formation, Ugt1a1, like the human homolog, seems to play an important role in the liver.
Mol. Nutr. Food Res. 2022, 66, 2200063 DOI: 10.1002/mnfr.202200063 Alpha-cyclodextrin, a low-viscosity soluble dietary fibers, beneficially modified gut microbiota, promoted luminal short chain fatty acids (SCFAs) productions, and enhanced the differentiation of naïve T cells into regulatory T cells, leading to the alleviation of T cell- dependent colonic inflammation. This is reported by Yuka Yamanouchi and co-authors in article number 2200063.
Polyethylene glycol (PEG) is a commonly used dispersant for oral administration of hydrophobic agents. PEG is partly absorbed in the small intestine, and the unabsorbed fraction reaches the large intestine; thus, oral administration of PEG may impact the gut microbial community. However, to the best of our knowledge, no study evaluated the effects of PEG on gut commensal bacteria. Herein, we aimed to determine whether oral administration of PEG modifies the gut microbiota. Administration of PEG400 and PEG4000 altered gut microbial diversity in a concentration-dependent manner. Taxonomic analysis revealed that Akkermansia muciniphila and particularly Parabacteroides goldsteinii were overrepresented in mice administered with 40% PEG. PEG400 administration ameliorated the high-fat diet (HFD)-induced obesity and adipose tissue inflammation. Fecal microbiome transplantation from PEG400-administered donors counteracted the HFD-induced body and epididymal adipose tissue weight gain, indicating that PEG400-associated bacteria are responsible for the anti-obesity effect. Conversely, carboxymethyl cellulose, also used as a dispersant, did not affect the abundance of these two bacterial species or HFD-induced obesity. In conclusion, we demonstrated that oral administration of a high concentration of PEG400 (40%) alters the gut microbiota composition and ameliorates HFD-induced obesity.
Quercetin is a flavonoid with many physiological effects. Absorbed quercetin is rapidly conjugated in the intestinal epithelium and liver. Different positional isomers of quercetin conjugates have different physiological properties. However, the mechanisms of quercetin conjugation in the intestine are not fully clarified. We examined the regioselective quercetin conjugate formation in the intestine after oral administration of quercetin glycosides, by simultaneous sampling of blood from the portal vein and superior vena cava, and quantifying various positional isomers of quercetin glucuronides and sulfates in conscious rats. Concentrations of quercetin glucuronides were higher in blood from the portal vein than the superior vena cava, showing that glucuronidation mainly occurred in the intestine. Such differences were not observed for quercetin sulfates. Regioselectivity of the intestinal glucuronidation in quercetin hydroxyl groups were 7- >3'- >3- >4'-OH. Quercetin was mainly sulfated on 3'-OH at 30 min, but on 4'-OH at 240 min.
The adverse effects (diarrhea and neutropenia) of irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) are associated with genetic variants of uridine diphosphate glucuronosyltransferase 1A subfamilies (UGT1As). UGT1As are enzymes that metabolize the active form of irinotecan, 7-ethyl-10 hydroxycamptothecin (SN-38), by glucuronidation in the liver. They are widely known as predictive factors of severe adverse effects, such as neutropenia and diarrhea. Some studies have suggested that variants of UGT1As affect SN-38 glucuronidation activities, thus exerting severe adverse effects. We aimed to identify UGT1A isoforms that show SN-38 glucuronidation activity and determine the relationship between UGT1A variants and SN-38 glucuronidation in vitro. We found that UGT1A1 and UGT1A6–UGT1A10 displayed SN-38 glucuronidation activity. Among these, UGT1A1 was the most active. Furthermore, the variants of these isoforms showed decreased SN-38 glucuronidation activity. In our study, we compared the different variants of UGT1As, such as UGT1A1.6, UGT1A1.7, UGT1A1.27, UGT1A1.35, UGT1A7.3, UGT1A8.4, UGT1A10M59I, and UGT1A10T202I, to determine the differences in the reduction of glucuronidation. Our study elucidates the relationship between UGT1A variants and the level of glucuronidation associated with each variant. Therefore, testing can be done before the initiation of irinotecan treatment to predict potential toxicities and adverse effects.
Obesity is a global epidemic and a significant risk factor for various diseases. Obesity and dysbiosis are associated, drawing attention to the mechanisms that regulate the gut microbiota. In this study, we focused on the postbiotic effects of rice kefiran (Kef), a functional product of Lactobacillus kefiranofaciens cultured in a rice-based medium, on obesity and its complications. Although Kef has the potential to improve obesity, the underlying mechanisms remain unknown. Therefore, we aimed to elucidate the mechanisms underlying changes in gut microbiota. The administration of Kef significantly suppressed diet-induced body weight gain, reduced liver fat accumulation, and modestly improved insulin resistance. Among the gut bacteria, Lachnospiraceae and Lachnoclostridium, which were positively correlated with obesity, decreased in mice administered Kef. In contrast, Bacteroides and Alistipes, both reported to ameliorate obesity, were increased. Consistent with the changes in the gut microbiota, Kef increased fecal acetate levels, which ameliorated obesity and hepatic steatosis. Predictive metagenomic analysis suggested that Kef administration increased the abundance of KEGG orthologs, associated with carbohydrate metabolism and improvements in insulin resistance. In conclusion, Kef improves diet-induced obesity, hepatic steatosis, and insulin resistance by regulating the gut microbiota’s composition.