Mungbean (Vigna radiate L. Wilczek) is an important legume crop for its valuable nutritional and health benefits. Desiccation tolerance (DT) is a capacity of seeds to survive and maintain physiological activities during storage and under stress conditions. Many studies of DT have been reported in other legume crop, such as soybean and Medicago truncatula with little studies in the mungbean. In this study, the transcript profiles of mungbean seeds under different imbibition times were investigated for DT using RNA-sequencing (RNA-seq). A total of 3210 differentially expressed genes (DEGs) were found at the key period of DT (3-18 h of imbibition). Gene ontology (GO) and KEGG analysis showed that the terms of "response to stimulus," "transcription regulator," "methylation," and "starch and sucrose metabolism" were enriched for DT. Clustering analysis also showed that many transcription factors (MYB, AP2, and NAC), HSPs, embryogenesis abundant (LEA) proteins, and genes encoding methyltransferase and histone were differentially expressed. Nine of these DEGs were further validated by quantitative RT-PCR (qRT-PCR). Our study extends our knowledge of mungbean transcriptomes and further provides insight into the molecular mechanism of DT as well as new strategies for developing drought-tolerant crops.
Mung bean (Vigna radiata), an important legume crop, has the property of desiccation tolerance (DT), which is lost in the final stage of germination (preimbibition, 18 h-24 h). We compared parameters related to the programmed cell death (PCD) of mung bean seeds before and after dehydration at different imbibition stages through various detection methods. The results of Evans blue and TTC staining methods showed that the dehydration process could lead to cell death. The results of optical and subcellular morphology showed that PCD occurred after dehydration. The destruction of DNA integrity and the activity changes in caspase and total nuclease in mung bean seeds after dehydration treatment indicated that the loss of desiccation tolerance was related to PCD. Dehydration resulted in the destruction of the mitochondrial structure, reversal of the membrane potential, and the entrance of cytochrome C into the cytoplasm. These processes all indicate that the mitochondrial apoptosis pathway was the main form of dehydration-induced PCD. The results of cytoplasmic Ca2+ concentration showed that Ca2+ signaling also played a role in inducing PCD, with the upstream signal being dehydration-induced changes in water potential and the downstream signal being the ROS and mitochondrial PT channel, according to the order in which these signals happened. The mitochondrial apoptosis pathway can be considered the main mechanism of dehydration-induced PCD based on our analysis of the sequence of major events in PCD. The main processes include dehydration induction, changes in Ca2+ and mitochondrial respiratory electron transport, the reversal of mitochondrial membrane potential induced by ROS and Ca2+, and the transmission and execution of PCD downstream signals induced by cytochrome C release.
Exploring microorganisms especially bacteria associated with the degradation of lignocellulosic biomass shows great potentials in biofuels production. The rice endophytic bacterium Pantoea ananatis Sd-1 with strong lignocellulose degradation capacity has been reported in our previous study. However, a comprehensive analysis of its corresponding degradative system has not yet been conducted. The aim of this work is to identify and characterize the lignocellulolytic enzymes of the bacterium to understand its mechanism of lignocellulose degradation and facilitate its application in sustainable energy production. The genomic analysis revealed that there are 154 genes encoding putative carbohydrate-active enzymes (CAZy) in P. ananatis Sd-1. This number is higher than that of compared cellulolytic and ligninolytic bacteria as well as other eight P. ananatis strains. The CAZy in P. ananatis Sd-1 contains a complete repertoire of enzymes required for cellulose and hemicellulose degradation. In addition, P. ananatis Sd-1 also possesses plenty of genes encoding potential ligninolytic relevant enzymes, such as multicopper oxidase, catalase/hydroperoxidase, glutathione S-transferase, and quinone oxidoreductase. Quantitative real-time PCR analysis of parts of genes encoding lignocellulolytic enzymes revealed that they were significantly up-regulated (at least P < 0.05) in presence of rice straw. Further identification of secretome of P. ananatis Sd-1 by nano liquid chromatography–tandem mass spectrometry confirmed that considerable amounts of proteins involved in lignocellulose degradation were only detected in rice straw cultures. Rice straw saccharification levels by the secretome of P. ananatis Sd-1 reached 129.11 ± 2.7 mg/gds. Correspondingly, the assay of several lignocellulolytic enzymes including endoglucanase, exoglucanase, β-glucosidase, xylanase-like, lignin peroxidase-like, and laccase-like activities showed that these enzymes were more active in rice straw relative to glucose substrates. The high enzymes activities were not attributed to bacterial cell densities but to the difference of secreted protein contents. Our results indicate that P. ananatis Sd-1 can produce considerable lignocellulolytic enzymes including cellulases, hemicellulases, and ligninolytic relevant enzymes. The high activities of those enzymes could be efficiently induced by lignocellulosic biomass. This identified degradative system is valuable for the lignocellulosic bioenergy industry.