Although investigations of medieval plague victims have identified Yersinia pestis as the putative etiologic agent of the pandemic, methodological limitations have prevented large-scale genomic investigations to evaluate changes in the pathogen's virulence over time. We screened over 100 skeletal remains from Black Death victims of the East Smithfield mass burial site (1348-1350, London, England). Recent methods of DNA enrichment coupled with high-throughput DNA sequencing subsequently permitted reconstruction of ten full human mitochondrial genomes (16 kb each) and the full pPCP1 (9.6 kb) virulence-associated plasmid at high coverage. Comparisons of molecular damage profiles between endogenous human and Y. pestis DNA confirmed its authenticity as an ancient pathogen, thus representing the longest contiguous genomic sequence for an ancient pathogen to date. Comparison of our reconstructed plasmid against modern Y. pestis shows identity with several isolates matching the Medievalis biovar; however, our chromosomal sequences indicate the victims were infected with a Y. pestis variant that has not been previously reported. Our data reveal that the Black Death in medieval Europe was caused by a variant of Y. pestis that may no longer exist, and genetic data carried on its pPCP1 plasmid were not responsible for the purported epidemiological differences between ancient and modern forms of Y. pestis infections.
A series of studies have documented how Steppe pastoralist-related ancestry reached central Europe by at least 2500 BCE, while Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BCE. However, the spread of these ancestries into the western Mediterranean where they have contributed to many populations living today remains poorly understood. We generated genome-wide ancient DNA from the Balearic Islands, Sicily, and Sardinia, increasing the number of individuals with reported data from these islands from 3 to 52. We obtained data from the oldest skeleton excavated from the Balearic islands (dating to ∼2400 BCE), and show that this individual had substantial Steppe pastoralist-derived ancestry; however, later Balearic individuals had less Steppe heritage reflecting geographic heterogeneity or immigration from groups with more European first farmer-related ancestry. In Sicily, Steppe pastoralist ancestry arrived by ∼2200 BCE and likely came at least in part from Spain as it was associated with Iberian-specific Y chromosomes. In Sicily, Iranian-related ancestry also arrived by the Middle Bronze Age, thus revealing that this ancestry type, which was ubiquitous in the Aegean by this time, also spread further west prior to the classical period of Greek expansion. In Sardinia, we find no evidence of either eastern ancestry type in the Nuragic Bronze Age, but show that Iranian-related ancestry arrived by at least ∼300 BCE and Steppe ancestry arrived by ∼300 CE, joined at that time or later by North African ancestry. These results falsify the view that the people of Sardinia are isolated descendants of Europe’s first farmers. Instead, our results show that the island’s admixture history since the Bronze Age is as complex as that in many other parts of Europe.
Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.
We present the first ancient DNA data from the Pre-Pottery Neolithic of Mesopotamia (Southeastern Turkey and Northern Iraq), Cyprus, and the Northwestern Zagros, along with the first data from Neolithic Armenia. We show that these and neighboring populations were formed through admixture of pre-Neolithic sources related to Anatolian, Caucasus, and Levantine hunter-gatherers, forming a Neolithic continuum of ancestry mirroring the geography of West Asia. By analyzing Pre-Pottery and Pottery Neolithic populations of Anatolia, we show that the former were derived from admixture between Mesopotamian-related and local Epipaleolithic-related sources, but the latter experienced additional Levantine-related gene flow, thus documenting at least two pulses of migration from the Fertile Crescent heartland to the early farmers of Anatolia.
Significance The bacterium Yersinia pestis has caused numerous historically documented outbreaks of plague and research using ancient DNA could demonstrate that it already affected human populations during the Neolithic. However, the pathogen’s genetic diversity, geographic spread, and transmission dynamics during this early period of Y. pestis evolution are largely unexplored. Here, we describe a set of ancient plague genomes up to 5,000 y old from across Eurasia. Our data demonstrate that two genetically distinct forms of Y. pestis evolved in parallel and were both distributed across vast geographic distances, potentially occupying different ecological niches. Interpreted within the archeological context, our results suggest that the spread of plague during this period was linked to increased human mobility and intensification of animal husbandry.
Abstract Twelve human skeletons, approximately 2000 years old, were recovered from the Faraoskop archaeological site in the Western Cape Province, South Africa (Manhire 1993). Several of the skeletons were well enough preserved to determine the osteological profiles (sex, age and stature etc.). Additionally, paleopathological and traumatic changes were observed on some of these skeletal remains. Given suggested context that these human remains were drawn from a single mortuary event, this paper investigates the possibility of familial relationships between the individuals by establishing maternal profiles from mitochondrial DNA. The mitochondrial DNA analysis resulted in the identification of four full genomes from the Faraoskop (FK) individuals and the two Khoesan pastoralist individuals chosen as reference samples for the analysis. Three other FK individuals provided partial genomes which could be assigned to incomplete haplotypes. Five individuals could not be sequenced due to poor DNA preservation. Molecular sex could be confirmed for five FK and two reference individuals, adding to the sex assessment from osteological data. All but one of the mitochondrial haplotypes were L0d1 or L0d2 which is consistent with mtDNA from living Khoesan populations in southern Africa. One individual (FK1) was L0f1, a haplotype which is not present southern African Khoesan, but is currently centred in Uganda and Tanzania. It is occasionally found amongst southern African Bantu speakers which suggests that the presence of L0f1 is a remnant of an earlier distribution which is now lost. The three L0 mitochondrial haplotypes from the six Faraoskop individuals (L0d1, L0d2, and L0f) suggest a diversity of maternal lineages compatible with the diversity of Khoesan groups but given the simultaneity of the burial, it is tempting to suggest that those with similar maternal haplotypes were closely related.
Abstract For historic individuals, the outward appearance and other phenotypic characteristics remain often non-resolved. Unfortunately, images or detailed written sources are only scarcely available in many cases. Attempts to study historic individuals with genetic data so far focused on hypervariable regions of mitochondrial DNA and to some extent on complete mitochondrial genomes. To elucidate the potential of in-solution based genome-wide SNP capture methods - as now widely applied in population genetics - we extracted DNA from the 17th century remains of George Bähr, the architect of the Dresdner Frauenkirche. We were able to identify the remains to be of male origin, showing sufficient DNA damage, deriving from a single person and being thus likely authentic. Furthermore, we were able to show that George Bähr had light skin pigmentation and most likely brown eyes. His genomic DNA furthermore points to a Central European origin. We see this analysis as an example to demonstrate the prospects that new in-solution SNP capture methods can provide for historic cases of forensic interest, using methods well established in ancient DNA (aDNA) research and population genetics.