Causal variants for complex traits, such as eQTL are often found in non-coding regions of the genome, where they are hypothesised to influence phenotypes by regulating gene expression. Many regulatory regions are marked by histone modifications, which can be assayed by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Sequence reads from ChIP-seq form peaks at putative regulatory regions, which may reflect the amount of regulatory activity at this region. Therefore, eQTL which are also associated with differences in histone modifications are excellent candidate causal variants.
Polymorphisms underlying complex traits often explain a small part (less than 1 %) of the phenotypic variance (σ2 P). This makes identification of mutations underling complex traits difficult and usually only a subset of large-effect loci are identified. One approach to identify more loci is to increase sample size of experiments but here we propose an alternative. The aim of this paper is to use secondary phenotypes for genetically simple traits during the QTL discovery phase for complex traits. We demonstrate this approach in a dairy cattle data set where the complex traits were milk production phenotypes (fat, milk and protein yield; fat and protein percentage in milk) measured on thousands of individuals while secondary (potentially genetically simpler) traits are detailed milk composition traits (measurements of individual protein abundance, mineral and sugar concentrations; and gene expression). Quantitative trait loci (QTL) were identified using 11,527 Holstein cattle with milk production records and up to 444 cows with milk composition traits. There were eight regions that contained QTL for both milk production and a composition trait, including four novel regions. One region on BTAU1 affected both milk yield and phosphorous concentration in milk. The QTL interval included the gene SLC37A1, a phosphorous antiporter. The most significant imputed sequence variants in this region explained 0.001 σ2 P for milk yield, and 0.11 σ2 P for phosphorus concentration. Since the polymorphisms were non-coding, association mapping for SLC37A1 gene expression was performed using high depth mammary RNAseq data from a separate group of 371 lactating cows. This confirmed a strong eQTL for SLC37A1, with peak association at the same imputed sequence variants that were most significant for phosphorus concentration. Fitting any of these variants as covariables in the association analysis removed the QTL signal for milk production traits. Plausible causative mutations in the casein complex region were also identified using a similar strategy. Milk production traits in dairy cows are typical complex traits where polymorphisms explain only a small portion of the phenotypic variance. However, here we show that these mutations can have larger effects on secondary traits, such as concentrations of minerals, proteins and sugars in the milk, and expression levels of genes in mammary tissue. These larger effects were used to successfully map variants for milk production traits. Genetically simple traits also provide a direct biological link between possible causal mutations and the effect of these mutations on milk production.
Inflammation of the mammary gland following bacterial infection, commonly known as mastitis, affects all mammalian species. Although the aetiology and epidemiology of mastitis in the dairy cow are well described, the genetic factors mediating resistance to mammary gland infection are not well known, due in part to the difficulty in obtaining robust phenotypic information from sufficiently large numbers of individuals. To address this problem, an experimental mammary gland infection experiment was undertaken, using a Friesian-Jersey cross breed F2 herd. A total of 604 animals received an intramammary infusion of Streptococcus uberis in one gland, and the clinical response over 13 milkings was used for linkage mapping and genome-wide association analysis. A quantitative trait locus (QTL) was detected on bovine chromosome 11 for clinical mastitis status using micro-satellite and Affymetrix 10 K SNP markers, and then exome and genome sequence data used from the six F1 sires of the experimental animals to examine this region in more detail. A total of 485 sequence variants were typed in the QTL interval, and association mapping using these and an additional 37 986 genome-wide markers from the Illumina SNP50 bovine SNP panel revealed association with markers encompassing the interleukin-1 gene cluster locus. This study highlights a region on bovine chromosome 11, consistent with earlier studies, as conferring resistance to experimentally induced mammary gland infection, and newly prioritises the IL1 gene cluster for further analysis in genetic resistance to mastitis.
Economically important milk production traits including milk volume, milk fat and protein yield vary considerably across dairy goats in New Zealand. A significant portion of the variation is attributable to genetic variation. Discovery of genetic markers linked to milk production traits can be utilised to drive selection of high-performance animals. A previously reported genome wide association study across dairy goats in New Zealand identified a quantitative trait locus (QTL) located on chromosome 19. The most significantly associated single nucleotide polymorphism (SNP) marker for this locus is located at position 26,610,610 (SNP marker rs268292132). This locus is associated with multiple milk production traits including fat, protein and volume. The predicted effect of selection for the beneficial haplotype would result in an average production increase of 2.2 kg fat, 1.9 kg protein and 73.6 kg milk yield. An outstanding question was whether selection for the beneficial allele would co-select for any negative pleiotropic effects. An adverse relationship between milk production and udder health traits has been reported at this locus. Therefore, a genome wide association study was undertaken looking for loci associated with udder traits.The QTL and production associated marker rs268292132 was identified in this study to also be associated with several goat udder traits including udder depth (UD), fore udder attachment (FUA) and rear udder attachment (RUA). Our study replicates the negative relationship between production and udder traits with the high production allele at position 19:26,610,610 (SNP marker rs268292132) associated with an adverse change in UD, FUA and RUA.Our study has confirmed the negative relationship between udder traits and production traits in the NZ goat population. We have found that the frequency of the high production allele is relatively high in the NZ goat population, indicating that its effect on udder conformation is not significantly detrimental on animal health. It will however be important to monitor udder conformation as the chromosome 19 locus is progressively implemented for marker assisted selection. It will also be of interest to determine if the gene underlying the production QTL has a direct effect on mammary gland morphology or whether the changes observed are a consequence of the increased milk volume.
With decreasing wool values, interest is increasing regarding shedding sheep. To investigate this, two long-term studies introducing Wiltshire genes into Romney flocks were initiated. Data from these two studies provide phenotypic relationships between a range of shedding scores at different ages. The data included shedding scores (on a 0–5 scale) repeated on lambs (∼5 months), hoggets (∼14–18 months) and two-tooths (∼27 months), and lamb fleece weights. Positive relationships between shedding scores on the same animals were observed. Lamb fleece weight was negatively correlated with all shedding scores. Lamb shedding score in February had a correlation of 0.54 (P < 0.001) with the February score as a hogget at Riverside farm. Scoring wool shedding is a laborious activity requiring individual animals to be scored in the shearing position. Therefore, lamb fleece weight was investigated for its relationship with shedding scores, as a potentially easier alternative. Lamb fleece weight had a greater correlation with February hogget shedding score than with the lamb shedding score (−0.76 vs −0.52, P < 0.001). This study indicated that February scores are an accurate predictor of future shedding phenotypes, and when used in conjunction with fleece weight, are a good predictor of phenotypes expressed at later ages.
Abstract Background Animal health and welfare are at the forefront of public concern and the agricultural sector is responding by prioritising the selection of welfare-relevant traits in their breeding schemes. In some cases, welfare-enhancing traits such as horn-status (i.e., polled) or diluted coat colour, which could enhance heat tolerance, may not segregate in breeds of primary interest, highlighting gene-editing tools such as the CRISPR-Cas9 technology as an approach to rapidly introduce variation into these populations. A major limitation preventing the acceptance of CRISPR-Cas9 mediated gene-editing, however, is the potential for off-target mutagenesis, which has raised concerns about the safety and ultimate applicability of this technology. Here, we present a clone-based study design that has allowed a detailed investigation of off-target and de novo mutagenesis in a cattle line bearing edits in the PMEL gene for diluted coat-colour. Results No off-target events were detected from high depth whole genome sequencing performed in precursor cell-lines and resultant calves cloned from those edited and non-edited cell lines. Long molecule sequencing at the edited site and plasmid-specific PCRs did not reveal structural variations and/or plasmid integration events in edited samples. Furthermore, an in-depth analysis of de novo mutations across the edited and non-edited cloned calves revealed that the mutation frequency and spectra were unaffected by editing status. Cells in culture, however, appeared to have a distinct mutation signature where de novo mutations were predominantly C > A mutations, and in cloned calves they were predominantly T > G mutations, deviating from the expected excess of C > T mutations. Conclusions We found no detectable CRISPR-Cas9 associated off-target mutations in the gene-edited cells or calves derived from the gene-edited cell line. Comparison of de novo mutation in two gene-edited calves and three non-edited control calves did not reveal a higher mutation load in any one group, gene-edited or control, beyond those anticipated from spontaneous mutagenesis. Cell culture and somatic cell nuclear transfer cloning processes contributed the major source of contrast in mutational profile between samples.