Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type–specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1– and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type–specific positioning of endosomes that facilitate endosome–LRO contacts and are required for organelle maturation.
Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER) from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK). Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.
Abstract Transient information input to brain leads to persistent changes in synaptic circuit, thereby forming memory engrams. Synapse undergoes coordinated functional and structural changes during this process but how such changes are achieved by its component molecules still largely remain enigmatic. We found that activated CaMKII, the central player of synaptic plasticity, undergoes liquid-liquid phase separation (LLPS) with NMDAR subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca 2+ is removed. The selective binding of activated CaMKII with GluN2B co-segregates AMPAR/neuroligin (NLGN) into a phase-in-phase assembly. Because postsynaptic NLGN clusters presynaptic neurexin and other active zone proteins thereby increasing the release probability of synaptic vesicles, this ensures efficient synaptic transmission. In this way, Ca 2+ -induced and persistent formation of LLPS by CaMKII serves as molecular basis of memory by functioning as an activity-dependent crosslinker for postsynaptic proteins and segregating trans-synaptic nanocolumns.
Localization of single molecules in microscopy images is a key step in quantitative single particle data analysis. Among them, single molecule based super-resolution optical microscopy techniques require high localization accuracy as well as computation of large data sets in the order of 10(5) single molecule detections to reconstruct a single image. We hereby present an algorithm based on image wavelet segmentation and single particle centroid determination, and compare its performance with the commonly used gaussian fitting of the point spread function. We performed realistic simulations at different signal-to-noise ratios and particle densities and show that the calculation time using the wavelet approach can be more than one order of magnitude faster than that of gaussian fitting without a significant degradation of the localization accuracy, from 1 nm to 4 nm in our range of study. We propose a simulation-based estimate of the resolution of an experimental single molecule acquisition.