Preeclampsia (PE) adversely impacts ~5% of pregnancies. Despite extensive research, no consistent biomarkers or cures have emerged, suggesting that different molecular mechanisms may cause clinically similar disease. To address this, we undertook a proteomics study with three main goals: (1) to identify a panel of cell surface markers that distinguish the trophoblast and endothelial cells of the placenta in the mouse; (2) to translate this marker set to human via the Human Protein Atlas database; and (3) to utilize the validated human trophoblast markers to identify subgroups of human preeclampsia. To achieve these goals, plasma membrane proteins at the blood tissue interfaces were extracted from placentas using intravascular silica-bead perfusion, and then identified using shotgun proteomics. We identified 1181 plasma membrane proteins, of which 171 were enriched at the maternal blood-trophoblast interface and 192 at the fetal endothelial interface with a 70% conservation of expression in humans. Three distinct molecular subgroups of human preeclampsia were identified in existing human microarray data by using expression patterns of trophoblast-enriched proteins. Analysis of all misexpressed genes revealed divergent dysfunctions including angiogenesis (subgroup 1), MAPK signaling (subgroup 2), and hormone biosynthesis and metabolism (subgroup 3). Subgroup 2 lacked expected changes in known preeclampsia markers (sFLT1, sENG) and uniquely overexpressed GNA12. In an independent set of 40 banked placental specimens, GNA12 was overexpressed during preeclampsia when co-incident with chronic hypertension. In the current study we used a novel translational analysis to integrate mouse and human trophoblast protein expression with human microarray data. This strategy identified distinct molecular pathologies in human preeclampsia. We conclude that clinically similar preeclampsia patients exhibit divergent placental gene expression profiles thus implicating divergent molecular mechanisms in the origins of this disease.
Abstract Medulloblastoma (MB) is the most common type of malignant pediatric brain cancer. Current standard of care (SOC) involves maximal safe resection and neuraxis radiotherapy and chemotherapy in individuals older than 3 years. To date, these cytotoxic SOC combined with craniospinal irradiation led to devastating neurocognitive and developmental deficits impacting quality of life for pediatric patients. The biological heterogeneity of MB is highlighted by the existence of four distinct molecular subgroups (WNT, SHH, Group 3, and Group 4). Group 3 and Group 4 have the poorest patient outcomes because of their aggressive, metastatic nature, and so often remain treatment refractory to SOC. Group 3 has a poor prognosis due to its high incidence of leptomeningeal spread and an overall survival rate of less than 50%. The cytotoxic nature and lack of response in specific subtypes to SOC underscores the urgent need for developing and translating novel treatment options including immunotherapies. In our earlier work, we have developed a therapy-adapted patient derived xenograft (PDX) model of the Group 3 MB as the tumor cells undergoes therapy in vitro and in vivo. N-glycocapture surfaceome profiling of the MB cells through this PDX model identified Integrin α5 (ITGA5) as one of the most differentially expressed targets found at recurrence when compared to engraftment and untreated timepoints. Through shRNA knockdown and small molecule inhibition, we identify ITGA5 expression marks a MB cell subpopulation with increased self-renewal ability both in vitro and in vivo. Access to recurrent MB (rMB) post-therapy allowed us to investigate the changes in the surfaceome of MB cells using proteomics profiling to identify promising rMB-specific targets for rational development of novel immunotherapies.
Availability of lung cancer models that closely mimic human tumors remains a significant gap in cancer research, as tumor cell lines and mouse models may not recapitulate the spectrum of lung cancer heterogeneity seen in patients. We aimed to establish a patient-derived tumor xenograft (PDX) resource from surgically resected non-small cell lung cancer (NSCLC). Fresh tumor tissue from surgical resection was implanted and grown in the subcutaneous pocket of non-obese severe combined immune deficient (NOD SCID) gamma mice. Subsequent passages were in NOD SCID mice. A subset of matched patient and PDX tumors and non-neoplastic lung tissues were profiled by whole exome sequencing, single nucleotide polymorphism (SNP) and methylation arrays, and phosphotyrosine (pY)-proteome by mass spectrometry. The data were compared to published NSCLC datasets of NSCLC primary and cell lines. 127 stable PDXs were established from 441 lung carcinomas representing all major histological subtypes: 52 adenocarcinomas, 62 squamous cell carcinomas, one adeno-squamous carcinoma, five sarcomatoid carcinomas, five large cell neuroendocrine carcinomas, and two small cell lung cancers. Somatic mutations, gene copy number and expression profiles, and pY-proteome landscape of 36 PDXs showed greater similarity with patient tumors than with established cell lines. Novel somatic mutations on cancer associated genes were identified but only in PDXs, likely due to selective clonal growth in the PDXs that allows detection of these low allelic frequency mutations. The results provide the strongest evidence yet that PDXs established from lung cancers closely mimic the characteristics of patient primary tumors.
Axons are complex subcellular compartments that are extremely long in relation to cell bodies, especially in peripheral nerves. Many processes are required and regulated during axon injury, including anterograde and retrograde transport, glia-to-axon macromolecular transfer, and local axonal protein synthesis. Many in vitro omics approaches have been used to gain insight into these processes, but few have been applied in vivo. Here we adapted the osmotic ex vivo axoplasm isolation method and analyzed the adult rat sciatic-nerve-extruded axoplasm by label-free quantitative proteomics before and after injury. 2087 proteins groups were detected in the axoplasm, revealing translation machinery and microtubule-associated proteins as the most overrepresented biological processes. Ribosomal proteins (73) were detected in the uninjured axoplasm and increased their levels after injury but not within whole sciatic nerves. Meta-analysis showed that detected ribosomal proteins were present in in vitro axonal proteomes. Because local protein synthesis is important for protein localization, we were interested in detecting the most abundant newly synthesized axonal proteins in vivo. With an MS/MS-BONCAT approach, we detected 42 newly synthesized protein groups. Overall, our work indicates that proteomics profiling is useful for local axonal interrogation and suggests that ribosomal proteins may play an important role, especially during injury.