Y1Ba2Cu3O7−δ films with a thickness between 0.5 and 5 μm were grown on Si covered with an amorphous SiO2 layer, on Zr foils, and on a single-crystalline MgO substrates by KrF laser ablation. The influence of film thickness and substrate temperature on the structure, texture, and microstructure of the as-grown films was investigated by x-ray diffraction and scanning electron microscopy. At an appropriate, substrate-dependent temperature, on all three substrate materials, the films grow c-axis oriented up to a thickness of about 2 μm (critical thickness), followed by a sharp transition to a-axis-oriented growth occurring within about 100 nm. Similar changes could be observed by lowering the substrate temperature by 120 °C. Therefore, the hypothesis was propounded that the thickness dependence of the growth orientation of the film is due to a decrease of the surface temperature. To prove this the influence of raising the substrate temperature during the growth process was investigated. It could be shown that a linear increase of the substrate temperature leads to completely c-axis-oriented films up to thicknesses of 5 μm. A change of the thermal emissivity of the film surface as a possible cooling mechanism is discussed.
We report absolute temperature measurements in a buried nanostructure with a sub-nanosecond temporal resolution. For this purpose, we take advantage of the temperature dependence of the resistance of a magnetic tunnel junction (MTJ) as detected by a fast sampling oscilloscope. After calibrating the measurement setup using steady-state electric heating, we are able to quantify temperature changes in the MTJ induced by femtosecond optical heating of the metal contact lying several 100 nm above the MTJ. We find that a femtosecond pulse train with an average power of 400 mW and a repetition rate of 76 MHz leads to a constant temperature increase of 80 K and a temporally varying temperature change of 2 K in the MTJ. The maximum temperature change in the MTJ occurs 4 ns after the femtosecond laser pulses hit the metal contact, which is supported by simulations. Our work provides a scheme to quantitatively study local temperatures in nanoscale structures and might be important for the testing of nanoscale thermal transport simulations.
The interplay between charge, spin, and heat currents in magnetic nano systems subjected to a temperature gradient has lead to a variety of novel effects and promising applications studied in the fast-growing field of spincaloritronics. Here we explore the magnetothermoelectrical properties of an individual magnetic domain wall in a permalloy nanowire. In thermal gradients of the order of few Kelvin per micrometer along the long wire axis, we find a clear magneto-Seebeck signature due to the presence of a single domain wall. The observed domain wall magneto-Seebeck effect can be explained by the magnetization-dependent Seebeck coefficient of permalloy in combination with the local spin configuration of the domain wall.
Abstract Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetisation patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using superconducting quantum interference devices, spin centre and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoscale magnetic resonance imaging. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of the development of magnetic imaging technologies for the upcoming decade with a focus on physics, materials science, and chemistry of planar, three-dimensional and geometrically curved objects of different material classes including two-dimensional materials, complex oxides, semi-metals, multiferroics, skyrmions, antiferromagnets, frustrated magnets, magnetic molecules/nanoparticles, ionic conductors, superconductors, spintronic and spinorbitronic materials.
ZnO nanorods were grown on Si substrates by an aqueous chemical approach and subsequently doped by V implantation. Transmission electron microscopy and photoluminescence spectroscopy reveal a severely defective material directly after the implantation process. Subsequent annealing leads to a partial recovery of the crystal structure. The magnetic features of ZnO:V nanorods were investigated by magnetic force microscopy. Images taken of ensembles as well as of single rods clearly display contrast, which is seen as a strong indication of ferromagnetism at room temperature.
Magnetic force microscopy (MFM) measurements generally provide phase images that represent the signature of domain structures on the surface of nanomaterials. To quantitatively determine stray magnetic fields based on an MFM image requires calibrated properties of the magnetic tip. In this article, an approach is employed for calibrating a magnetic tip using a Co/Pt multilayered film as a reference sample that shows stable well-known magnetic properties and well-defined perpendicular band domains. The approach is based on a regularized deconvolution process in the Fourier domain with a Wiener filter and the L-curve method for determining a suitable regularization parameter to get a physically reasonable result. The calibrated tip is applied for a traceable quantitative determination of the stray fields of a test sample, which has a spatial frequency spectrum covered by that of the reference sample. According to the "guide to the expression of uncertainty in measurement," uncertainties of the processing algorithm are estimated considering the fact that the regularization influences the quantitative analysis significantly. We discuss relevant uncertainty components and their propagations between the real domain and the Fourier domain for both, the tip calibration procedure and the stray field calculation, and propose an uncertainty evaluation procedure for quantitative MFM.
We experimentally study the thermoelectrical signature of individual skyrmions in chiral $\mathrm{Pt}/\mathrm{Co}/\mathrm{Ru}$ multilayers. Using a combination of controlled nucleation, single skyrmion annihilation, and magnetic field dependent measurements the thermoelectric signature of individual skyrmions is characterized. The observed signature is explained by the anomalous Nernst effect of the skyrmion's spin structure. Possible topological contributions to the observed thermoelectrical signature are discussed. Such thermoelectrical characterization allows for noninvasive detection and counting of skyrmions and enables fundamental studies of topological thermoelectric effects on the nanoscale.