ABSTRACT Background The zygote, a totipotent stem cell, constitutes a critical stage of the life cycle of sexually reproducing organisms. It is produced by the fusion of two differentiated cells — the egg and sperm, which in plants have radically different siRNA transcriptomes from each other and from multicellular embryos. Due to technical challenges, the epigenetic changes that accompany the zygotic transition are poorly understood. Results Here, we characterized the small RNA transcriptome of rice zygotes. We found widespread redistribution of 24-nt siRNAs relative to gametes, including absence of sperm signature siRNAs, reduction at egg signature siRNA loci, and upregulation at seedling signature siRNA loci. Loci with reduced siRNAs in zygote relative to egg were gene-distal and heterochromatic, while loci with increased siRNAs relative to egg had a similar genomic distribution to canonical siRNA loci. Although both egg and zygote siRNA loci had higher mCHH level in wildtype than in drm2 embryo, zygote but not egg siRNA loci were associated with hypermethylation in mature embryo. A small fraction of siRNA loci (~1%) called siren loci accounted for 60% of all siRNAs within zygote siRNA loci, that likely arose from maternal carryover as they had similarly abundant siRNAs in egg; these siren loci were not associated with embryo hypermethylation. Conclusions Taken together, our results indicate re-distribution of siRNAs in rice zygotes towards the canonical vegetative profile, that are consistent with the initiation of resetting of the gametic epigenome before the first embryonic division.
Abstract Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.
A maize chromosome variant called abnormal chromosome 10 (Ab10) converts knobs on chromosome arms into neocentromeres, causing their preferential segregation to egg cells in a process known as meiotic drive. We previously demonstrated that the gene Kinesin driver ( Kindr ) on Ab10 encodes a kinesin-14 required to mobilize neocentromeres made up of the major tandem repeat knob180. Here we describe a second kinesin-14 gene, TR-1 kinesin ( Trkin ), that is required to mobilize neocentromeres made up of the minor tandem repeat TR-1 . Trkin lies in a 4-Mb region of Ab10 that is not syntenic with any other region of the maize genome and shows extraordinary sequence divergence from Kindr and other kinesins in plants. Despite its unusual structure, Trkin encodes a functional minus end-directed kinesin that specifically colocalizes with TR-1 in meiosis, forming long drawn out neocentromeres. TRKIN contains a nuclear localization signal and localizes to knobs earlier in prophase than KINDR. The fact that TR-1 repeats often co-occur with knob180 repeats suggests that the current role of the TRKIN/TR-1 system is to facilitate the meiotic drive of the KINDR/knob180 system.
Plants make use of distinct types of DNA methylation characterized by their DNA methyltransferases and modes of regulation. One type, RNA-directed DNA methylation (RdDM), is guided by small interfering RNAs (siRNAs) to the edges of transposons that are close to genes, areas called mCHH islands in maize (Zea mays). Another type, chromomethylation, is guided by histone H3 lysine 9 methylation to heterochromatin across the genome. We examined DNA methylation and small RNA expression in plant tissues that were mutant for both copies of the genes encoding chromomethylases as well as mutants for both copies of the genes encoding DECREASED DNA METHYLATION1 (DDM1)-type nucleosome remodelers, which facilitate chromomethylation. Both sets of double mutants were nonviable but produced embryos and endosperm. RdDM was severely compromised in the double mutant embryos, both in terms of DNA methylation and siRNAs. Loss of 24-nucleotide siRNA from mCHH islands was coupled with a gain of 21-, 22-, and 24-nucleotide siRNAs in heterochromatin. These results reveal a requirement for both chromomethylation and DDM1-type nucleosome remodeling for RdDM in mCHH islands, which we hypothesize is due to dilution of RdDM components across the genome when heterochromatin is compromised.
List of primers used in ChIP-qPCR experiments. The first and second column indicate the loci the primers anneal to, and the name of the primer pairs, respectively. The right column indicates the sequences of the forward (F:) and reverse (R:) primers for each pair. (XLSX 12 kb)
List of enhancer candidates in husk. The columns indicate from left to right: chromosome number, start coordinate, end coordinate, candidate ID, DNase intensity ranking, DNase ranking p value, H3K9ac intensity ranking and H3K9ac ranking p value, absence or presence of CNSs. (XLSX 86 kb)
Abstract Targeted demethylation by DNA glycosylases (DNGs) results in differential methylation between parental alleles in the endosperm, which drives imprinted expression. Here, we performed RNA sequencing on endosperm derived from DNG mutant mdr1 and wild-type endosperm. Consistent with the role of DNA methylation in gene silencing, we find 96 gene and 86 TE differentially expressed (DE) transcripts that lost expression in the hypermethylated mdr1 mutant. Compared with other endosperm transcripts, the mdr1 targets are enriched for TEs (particularly Helitrons), and DE genes are depleted for both core genes and GO term assignments, suggesting that the majority of DE transcripts are TEs and pseudo-genes. By comparing DE genes to imprinting calls from prior studies, we find that the majority of DE genes have maternally biased expression, and approximately half of all maternally expressed genes (MEGs) are DE in this study. In contrast, no paternally expressed genes (PEGs) are DE. DNG-dependent imprinted genes are distinguished by maternal demethylation and expression primarily in the endosperm, so we also performed EM-seq on hybrids to identify maternal demethylation and utilized a W22 gene expression atlas to identify genes expressed primarily in the endosperm. Overall, approximately ⅔ of all MEGs show evidence of regulation by DNA glycosylases. Taken together, this study solidifies the role of MDR1 in the regulation of maternally expressed, imprinted genes and TEs and identifies subsets of genes with DNG-independent imprinting regulation. Significance Statement This work investigates the transcriptome changes resulting from the loss of function of DNA glycosylase MDR1, revealing that, in wild-type endosperm, targets of MDR1 are expressed predominantly from the maternal allele and this expression is suppressed in mutants. Furthermore, by combining expression data, DNA methylation data, and developmental expression data, we are able to categorize all maternally expressed, imprinted genes based on DNA glycosylase dependent or independent regulatory methods.
ABSTRACT Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate elucidation of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here, we report the assembly and annotation of maize, a genetic and agricultural model species, using Single Molecule Real-Time (SMRT) sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and significant improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed over 130,000 intact transposable elements (TEs), allowing us to identify TE lineage expansions unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by SMRT sequencing. In addition, comparative optical mapping of two other inbreds revealed a prevalence of deletions in the low gene density region and maize lineage-specific genes.