While searching for 'organ-specific' genes in pea (Pisum sativum L.) we have isolated a gene (designated PsMTA) which has an ORF encoding a predicted protein with some similarity to metallothioneins (MTs). The PsMTA transcript is abundant in roots which have not been exposed to elevated concentrations of trace metals.
Summary Plant defences against insect herbivores can be divided into ‘static’ or constitutive defences, and ‘active’ or induced defences, although the insecticidal compounds or proteins involved are often the same. Induced defences have aspects common to all plants, whereas the accumulation of constitutive defences is species‐specific. Insect herbivores activate induced defences both locally and systemically by signalling pathways involving systemin, jasmonate, oligogalacturonic acid and hydrogen peroxide. Plants also respond to insect attack by producing volatiles, which can be used to deter herbivores, to communicate between parts of the plant, or between plants, to induce defence responses. Plant volatiles are also an important component in indirect defence. Herbivorous insects have adapted to tolerate plant defences, and such adaptations can also be constitutive or induced. Insects whose plant host range is limited are more likely to show constitutive adaptation to the insecticidal compounds they will encounter, whereas insects which feed on a wide range of plant species often use induced adaptations to overcome plant defences. Both plant defence and insect adaptation involve a metabolic cost, and in a natural system most plant–insect interactions involving herbivory reach a ‘stand‐off’ where both host and herbivore survive but develop suboptimally. Contents Summary 145 I. Introduction 146 II. Accumulation of defensive compounds and induced resistance 146 III. Signalling pathways in wound‐induced resistance 147 IV. Insect modulation of the wounding response 155 V. Insects which evade the wounding response 156 VI. Insect‐induced emission of volatiles and tritrophic interactions 157 VII. Insect adaptation to plant defences 160 Conclusions 163 Acknowlegements 163 References 163
The CCGG and GCGC sequences in pea genomic rDNA were found to be hypomethylated relative to the leaf in the developing cotyledon. No rRNA gene copies were detected with only unmethylated CCGG sequences and the majority appeared to contain a mixture of doubly methylated ( m C m CGG) and partially methylated (C m GG) sites. Some CCGG sequences were shown to have a greater probability of being undermethylated. Seed development did not appear to act as a stimulus for de novo methylation.
Abstract Protease activity in the gut of larvae of the bruchid beetle, Callosobruchus maculatus (a storage pest of cowpea seeds), has been investigated to help clarify nutritional mechanisms in view of reports that these insects carry out little or no proteolysis (Applebaum, 1964). Larval gut homogenates showed protease activity against a variety of different protein substrates, bud did not hydrolyse a synthetic trypsin substrate. The proteolytic activity had a pH optimum of 5.4. It was not inhibited by serine protease inhibitors, but was inhibited by reagents reactive against ‐SH groups. Protein trypsin inhibitors from legume seeds which are not hosts to C. maculatus (soybean, limabean) were not effective inhibitors of the larval proteolytic activity but a cowpea protease inhibitor preparation and aprotinin partially inhibited proteolysis. The latter two inhibitors also inhibited the plant thiol protease papain. It is suggested that C. maculatus has replaced the ‘normal’ insect proteases with an enzyme similar to plant proteases to evade the antimetabolic effects of trypsin/chymotrypsin inhibitors in seeds. Besides trypsin/chymotrypsin inhibitors, cowpea seeds also contain proteins which inhibit papain; these inhibitors were purified and were shown to be effective inhibitors of C. maculatus larval protease. Résumé Mise en évidence et caractérisation partielle d'une enzyme protéolytique importante du tube digestif des larves de Callosobruchus maculatus Callosobruchus maculatus attaque les graines stockées particulièrement de Vigna unguiculata. L'activité protéolytique du tube digestif des larves a été examinée. Aucune hydrolyse n'a été observée contre la N‐benzoyl arginine p‐nitroanilide (substrat de la trypsine synthétique), mais la protéolyse a été mise en évidence en utilisant la viciline de V. unguiculata comme substrat naturel ou la myoglobine comme substrat artificiel, le p.H optimum est de 5,4. Les inhibiteurs chimiques des protéases de la sérine n'ont pas altéré l'activité enzymatique, mais les réactifs du groupe SH l'ont inhibée. Nous suggérons que cette protéase est une thiol protéase, c'est à dire avec un groupe actif semblable à celui de la papaïne, protéase végétale. En accord avec cette hypothèse, les inhibiteurs de protéine efficaces seulement contre la trypsine, c'est à dire les inhibiteurs de la trypsine de Glycine max et de la trypsine de Phaseolus lunatus n'affectent pas cette protéase larvaire, tandis que les protéines avec une faible action inhibitrice contre la papaïne (préparation inhibitrice de la protéase de V. unguiculata , aprotinine) inhibent partiellement la protéolyse par des extraits de tube digestif larvaire. Des inhibiteurs protéiques de papaïne extraits de graines de V. unguiculata sont des inhibiteurs très efficaces de la protéase larvaire. On peut penser que C. maculatus contient une protéase semblable aux protéases végétales, plutôt qu'aux protéases classiques, d'insectes, ce qui permet d'éviter les effets antimétaboliques directs des inhibiteurs de protéase (inhibiteurs de trypsine et de chymotrypsine) trouvés en quantité relativement importantes dans les graines de légumineuses.