Abstract The scarcity of groundwater storage change data at the global scale hinders our ability to monitor groundwater resources effectively. In this study, we assimilate a state‐of‐the‐art terrestrial water storage product derived from Gravity Recovery and Climate Experiment (GRACE) satellite observations into NASA's Catchment land surface model (CLSM) at the global scale, with the goal of generating groundwater storage time series that are useful for drought monitoring and other applications. Evaluation using in situ data from nearly 4,000 wells shows that GRACE data assimilation improves the simulation of groundwater, with estimation errors reduced by 36% and 10% and correlation improved by 16% and 22% at the regional and point scales, respectively. The biggest improvements are observed in regions with large interannual variability in precipitation, where simulated groundwater responds too strongly to changes in atmospheric forcing. The positive impacts of GRACE data assimilation are further demonstrated using observed low‐flow data. CLSM and GRACE data assimilation performance is also examined across different permeability categories. The evaluation reveals that GRACE data assimilation fails to compensate for the lack of a groundwater withdrawal scheme in CLSM when it comes to simulating realistic groundwater variations in regions with intensive groundwater abstraction. CLSM‐simulated groundwater correlates strongly with 12‐month precipitation anomalies in low‐latitude and midlatitude areas. A groundwater drought indicator based on GRACE data assimilation generally agrees with other regional‐scale drought indicators, with discrepancies mainly in their estimated drought severity.
Abstract. Past studies on soil moisture spatial variability have been mainly conducted at catchment scales where soil moisture is often sampled over a short time period; as a result, the observed soil moisture often exhibited smaller dynamic ranges, which prevented the complete revelation of soil moisture spatial variability as a function of mean soil moisture. In this study, spatial statistics (mean, spatial variability and skewness) of in situ soil moisture, modeled and satellite-retrieved soil moisture obtained in a warm season (198 days) were examined over three large climate regions in the US. The study found that spatial moments of in situ measurements strongly depend on climates, with distinct mean, spatial variability and skewness observed in each climate zone. In addition, an upward convex shape, which was revealed in several smaller scale studies, was observed for the relationship between spatial variability of in situ soil moisture and its spatial mean when statistics from dry, intermediate, and wet climates were combined. This upward convex shape was vaguely or partially observable in modeled and satellite-retrieved soil moisture estimates due to their smaller dynamic ranges. Despite different environmental controls on large-scale soil moisture spatial variability, the correlation between spatial variability and mean soil moisture remained similar to that observed at small scales, which is attributed to the boundedness of soil moisture. From the smaller support (effective area or volume represented by a measurement or estimate) to larger ones, soil moisture spatial variability decreased in each climate region. The scale dependency of spatial variability all followed the power law, but data with large supports showed stronger scale dependency than those with smaller supports. The scale dependency of soil moisture variability also varied with climates, which may be linked to the scale dependency of precipitation spatial variability. Influences of environmental controls on soil moisture spatial variability at large scales are discussed. The results of this study should be useful for diagnosing large scale soil moisture estimates and for improving the estimation of land surface processes.
Abstract. The effective applications of land surface models (LSMs) and hydrologic models pose a varied set of data input and processing needs, ranging from ensuring consistency checks to more derived data processing and analytics. This article describes the development of the Land surface Data Toolkit (LDT), which is an integrated framework designed specifically for processing input data to execute LSMs and hydrological models. LDT not only serves as a preprocessor to the NASA Land Information System (LIS), which is an integrated framework designed for multi-model LSM simulations and data assimilation (DA) integrations, but also as a land-surface-based observation and DA input processor. It offers a variety of user options and inputs to processing datasets for use within LIS and stand-alone models. The LDT design facilitates the use of common data formats and conventions. LDT is also capable of processing LSM initial conditions and meteorological boundary conditions and ensuring data quality for inputs to LSMs and DA routines. The machine learning layer in LDT facilitates the use of modern data science algorithms for developing data-driven predictive models. Through the use of an object-oriented framework design, LDT provides extensible features for the continued development of support for different types of observational datasets and data analytics algorithms to aid land surface modeling and data assimilation.
In the United States, groundwater storage is somewhat well monitored (spatial and temporal data gaps notwithstanding) and abundant data are freely and easily accessible. Outside of the U.S., groundwater often is not monitored systematically and where it is the data are rarely centralized and made available. Since 2002 the Gravity Recovery and Climate Experiment (GRACE) satellite mission has delivered gravity field observations which have been used to infer variations in total terrestrial water storage, including groundwater, at regional to continental scales. Challenges to using GRACE for groundwater monitoring include its relatively coarse spatial and temporal resolutions, its inability to differentiate groundwater from other types of water on and under the land surface, and typical 2-3 month data latency. Data assimilation can be used to overcome these challenges, but uncertainty in the results remains and is difficult to quantify without independent observations. Nevertheless, the results are preferable to the alternative - no data at all- and GRACE has already revealed groundwater variability and trends in regions where only anecdotal evidence existed previously.
Land surface models (LSMs) encapsulate our understanding of terrestrial water and energy cycle physics and provide estimates of land surface states and fluxes when and where measurement gaps exist. Gaps in our understanding of the physics are a different issue. Data assimilation can address that issue both directly, through updating of prognostic model variables, or indirectly, when the simulated world conflicts with observation, necessitating adjustment of the model. Here we will focus on the latter case and present several examples, including (1) depth to bedrock adjustment to accommodate assimilated GRACE terrestrial water storage data; (2) steps to prevent immediate melting of assimilated snow cover; (3) irrigation's contribution to evapotranspiration; (4) lessons learned from soil moisture data assimilation; (5) the potential impact of satellite based runoff observation