Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.
Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW) biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Aromatic scaffolds are an important part of biologically active compounds and molecular probes used to study biochemical pathways and the involved targeted proteins of interest. 1-Oxo-1H-phenalene-2,3-dicarbonitrile-based compounds have been described as inhibitors of the BCL-2 family of proteins, and this core structure represents numerous possibilities for modifications that could lead to improved inhibitory potencies. Many studies demonstrated intriguing characteristics of these compounds in terms of reactivity and, interestingly, some contradictory literature reports appeared about reaction outcomes to synthesize them. Here, we initially provide a condensed overview of transformations performed on the phenalene scaffold, followed by the resynthesis of a 6-phenoxy-substituted derivative. We show that the initial determination of this particular structure was wrong and provide two-dimensional nuclear magnetic resonance (NMR) evidence to assign the structure properly. When preparing new derivatives using the same synthetic route, we observed 6- and 7-substituted regioisomers. After confirming their structures by NMR experiments, the ability of these compounds to inhibit BCL-2 was evaluated. The most potent 1-oxo-1H-phenalene-2,3-dicarbonitrile derivatives inhibited BCL-2 in the nanomolar range and showed double-digit micromolar cytotoxicity against four different cancer cell lines.
Lysophophatidylcholine (Lyso PC ) is an abundant constituent in human plasma. Patients with malignant cancer diseases have attenuated Lyso PC plasma levels, and thus Lyso PC has been examined as a metabolic biomarker for cancer prediction. Preclinical studies have shown that solid tumor cells drastically degrade Lyso PC s by incorporating their free fatty acids into cell membrane phospholipids. In this way, Lyso PC C18:0 reduced the metastatic spread of murine melanoma B16.F10 cells in mice. Although membrane rigidification may have a key role in the attenuation of metastasis, evidence for this has yet to be shown. Therefore, the present study aimed to determine how Lyso PC reduces the metastatic capacity of B16.F10 cells. Following cellular preincubation with Lyso PC C18:0 at increasing concentrations and lengths of time, cell migration was most significantly attenuated with 450 μ m Lyso PC C18:0 at 72 h. Biosensor measurements suggest that, despite their abundance in B16.F10 cells, Lyso PC ‐sensitive G protein‐coupled receptors do not appear to contribute to this effect. Instead, the attenuated migration appears to result from changes in cell membrane properties and their effect on underlying signaling pathways, most likely the formation of focal adhesion complexes. Treatment with 450 μ m Lyso PC C18:0 activates protein kinase C ( PKC )δ to phosphorylate syndecan‐4, accompanied by deactivation of PKC α. Subsequently, focal adhesion complex formation was attenuated, as confirmed by the reduced activity of focal adhesion kinase ( FAK ). Interestingly, 450 μ m Lyso PC C18:1 did not affect FAK activity, explaining its lower propensity to affect migration and metastasis. Therefore, membrane rigidification by Lyso PC C18:0 appears to prevent the formation of focal adhesion complexes, thus affecting integrin activity as a key for metastatic melanoma spread.
The microenvironment possesses a strong impact on the tumor chemoresistance when cells bind to components of the extracellular matrix. Here we elucidate the signaling pathways of cisplatin resistance in W1 ovarian cancer cells binding to collagen type 1 (COL1) and signaling interference with constitutive cisplatin resistance in W1CR cells to discover the targets for sensitization. Proteome kinase arrays and Western blots were used to identify the signaling components, their impact on cisplatin resistance was evaluated by inhibitory or knockdown approaches. W1 cell binding to COL1 upregulates integrin-associated signals via FAK/PRAS40/mTOR, confirmed by β1-integrin (ITGB1) knockdown. mTOR appears as key for resistance, its blockade reversed COL1 effects on W1 cell resistance completely. W1CR cells compensate ITGB1-knockdown by upregulation of discoidin domain receptor 1 (DDR1) as alternative COL1 sensor. COL1 binding via DDR1 activates the MAPK pathway, of which JNK1/2 appears critical for COL1-mediated resistance. JNK1/2 inhibition inverts COL1 effects in W1CR cells, whereas intrinsic cisplatin resistance remained unaffected. Remarkably, knockdown of HSP27, another downstream MAPK pathway component overcomes intrinsic resistance completely sensitizing W1CR cells to the level of W1 cells for cisplatin cytotoxicity. Our data confirm the independent regulation of matrix-induced and intrinsic chemoresistance in W1 ovarian cancer cells and offer novel targets for sensitization.