The model-based assessments of nominal Sludge Batch 4 (SB4) compositions suggest that a viable frit candidate does not appear to be a limiting factor as the Closure Business Unit (CBU) considers various tank blending options and/or washing strategies. This statement is based solely on the projected operating windows derived from model predictions and does not include assessments of SO{sub 4} solubility or melt rate issues. The viable frit candidates covered a range of Na{sub 2}O concentrations (from 8% to 13%--including Frit 418 and Frit 320) using a ''sliding Na{sub 2}O scale'' concept (i.e., 1% increase in Na{sub 2}O being balanced by a 1% reduction in SiO{sub 2}) which effectively balances the alkali content of the incoming sludge with that in the frit to maintain and/or increase the projected operating window size while potentially leading to improved melt rate and/or waste loadings. This strategy or approach allows alternative tank blending strategies and/or different washing scenarios to be considered and accounted for in an effective manner without wholesale changes to the frit composition. In terms of projected operating windows, in general, the sludge/frit systems evaluated resulted in waste loading intervals from 25 to the mid-40%'s or even the mid-50%'s. The results suggest that a single frit could be selected for use with all 20 options which indicates some degree of frit robustness with respect to sludge compositional variation. In fact, use of Frit 418 or Frit 320 (the ''cornerstone'' frits given previous processing experience in the Defense Waste Processing Facility (DWPF)) are plausible for most (if not all) options being considered. However, the frit selection process also needs to consider potential processing issues such as melt rate. Based on historical trends between melt rate and total alkali content, one may elect to use the frit with the highest alkali content that still yields an acceptable operating window. However, other constraints may restrict access to higher waste loading or the proposed blending option being considered (e.g., sulfate content of the high-level waste and/or Chemical Processing Cell (CPC) issues may necessitate a more-washed sludge).
The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.
In this work, we report the progress of the Glass Leaching Assessment for Durability (GLAD) program on the implementation of the United States Environmental Protection Agency (EPA) Leaching Environmental Assessment Framework pH-dependent leach test (EPA Method 1313) to low-activity nuclear waste (LAW) glasses. The GLAD program seeks to develop new strategies to understand the chemical durability of nuclear waste glasses for the disposal in near-surface conditions. A series of 16 high-waste loading LAW glasses, currently under development, were selected using machine learning methods to study the corrosion behavior using EPA Method 1313. Reacted glass powders were examined using scanning electron microscopy and the eluate compositions were examined using inductively coupled plasma-optical emission spectroscopy. Compositional modeling was used to fit the measured elemental releases from EPA Method 1313. The compositional models demonstrated that elements such as Si reduce elemental release while B can increase elemental release (consistent with elemental modeling of the Product Consistency Test and Vapor Hydration Test) while other elements, such as Fe, exhibit pH-dependent behavior. The amount of acid added during the EPA testing was found to significantly impact the observed result, which was only apparent after preforming the present matrix study. The overall titration curves were able to be compositionally modeled for future process optimization.
Although it is well known that the addition of Al{sub 2}O{sub 3} to borosilicate glasses enhances the durability of the waste form (through creation of network-forming tetrahedral Na+-[AlO{sub 4/2}]{sup -} pairs), the combination of high Al{sub 2}O{sub 3} and Na{sub 2}O can lead to the formation of nepheline (NaAlSiO{sub 4})--which can negatively impact durability. Given the projected high concentration of Al{sub 2}O{sub 3} in SB4 (Lilliston 2005) and the potential use of a high Na{sub 2}O based frit to improve melt rate and a high Na{sub 2}O sludge due to settling problems, the potential formation of nepheline in various SB4 systems continues to be assessed. Twelve SB4-based glasses were fabricated and their durabilities (via the Product Consistency Test [PCT]) measured to assess the potential for nepheline formation and its potential negative impact on durability. In terms of ''acceptability'', the results indicate that all of the study glasses produced are acceptable with respect to durability as defined by the PCT (normalized boron release values for all nepheline (NEPH) glasses were much lower than that of the Environmental Assessment (EA) glass (16.695 g/L)). The most durable glass is NEPH-04 (quenched) with a normalized boron release (NL [B]) of 0.61 g/L, while the least durable glass is NEPH-01 centerline canister cooled (ccc) with an NL [B] of 2.47 g/L (based on the measured composition). In terms of predictability, most of the study glasses are predictable by the {Delta}G{sub p} model. Those that are not predictable (i.e., they fall outside of the prediction limits) actually fall below the prediction interval (i.e., they are over predicted by the model) suggesting the model is conservative. The Phase 1 PCT results suggest that for those glasses prone to nepheline formation (using the 0.62 value developed by Li et al. (2003) as a guide), a statistically significant difference in PCT response was observed for the two heat treatments but the impact on durability was of little or no practical concern. When one couples the PCT responses with the X-Ray Diffraction (XRD) results and/or visual observations, one could conclude that the formation of nepheline in these glasses does have a negative impact on durability. However, that impact may be of statistical significance, but the practical impact may not be sufficient to avoid a specific candidate frit for the SB4 glass system. The results of this study not only suggest that the 0.62 value appears to be a reasonable guide to monitor sludge--frit systems with respect to potential nepheline formation, but also that the impact of nepheline, although statistically significant, has little or no practical impact in the SB4 system to durability as measured by the PCT. This latter statement must be qualified to some extent given only two glasses were selected which were actually ''prone to nepheline formation'' based on this general guide and the relatively volume % of nepheline formed based on XRD results ({approx} 0.5 vol%). If the presence of nepheline has no appreciable, adverse impact on durability for the recently revised SB4 systems, then as decisions regarding the viability of the SB4 options and the down select of candidate frits are pursued, little weight will be given to minimizing the likelihood of nepheline and the decisions will be dominated by waste throughput criteria. That is, the frit selection process will not have to consider the impact of nepheline on the ultimate durability of the product and can focus on recommending a frit that when coupled with the sludge can be processed over a waste loading (WL) interval of interest to the Defense Waste Processing Facility (DWPF) with melt rates meeting production expectations.
Abstract Archaeological glasses with prolonged exposure to biogeochemical processes in the environment can be used to understand glass alteration, which is important for the safe disposal of vitrified nuclear waste. Samples of mafic and felsic glasses with different chemistries, formed from melting amphibolitic and granitoid rocks, were obtained from Broborg, a Swedish Iron Age hillfort. Glasses were excavated from the top of the hillfort wall and from the wall interior. A detailed microscopic, spectroscopic, and diffraction study of surficial textures and chemistries were conducted on these glasses. Felsic glass chemistry was uniform, with a smooth surface showing limited chemical alteration (<150 nm), irrespective of the position in the wall. Mafic glass was heterogeneous, with pyroxene, spinel, feldspar, and quartz crystals in the glassy matrix. Mafic glass surfaces in contact with topsoil were rougher than those within the wall and had carbon-rich material consistent with microbial colonization. Limited evidence for chemical or physical alteration of mafic glass was found; the thin melt film that coated all exposed surfaces remained intact, despite exposure to hydraulically unsaturated conditions, topsoil, and associated microbiome for over 1,500 years. This supports the assumption that aluminosilicate nuclear waste glasses will have a high chemical durability in near-surface disposal facilities.
The second phase of the composition variation study (CVS) for the development of glass compositions to immobilize Idaho Nuclear Technology and Engineering Center (INTEC) high level wastes (HLW) is complete. This phase of the CVS addressed waste composition of high activity waste fractions (HAW) from the initial separations flowsheet. Updated estimates if INTEC calcined HLW compositions and of high activity waste fractions proposed to be separated from dissolved calcine were used as the waste component for this CVS phase. These wastes are of particular interest because high aluminum, calcium, zirconium, fluorine, potassium, and low iron and sodium content places them outside the vitrification experience in the Department of Energy complex. Because of the presence of calcium and fluorine, two major zirconia calcine components not addressed in Phase I, a series of scooping tests, designated Phase 2a, were performed. The results of these tests provided information on the effects of calcium and fluoride solubility and their impacts on product properties and composition boundary information for Phase 2b. Details and results of Phase 2a are reported separately. Through application of statistical techniques and the results of Phase 2a, a test matrix was defined for Phase 2b of the CVS. From this matrix, formulations were systematically selected for preparation and characterization with respect to visual and optical homogeneity, viscosity as a function of melt temperature, liquidus temperature (TL), and leaching properties based on response to the product consistency test. The results of preparing and characterizing the Phase 2b glasses are presented in this document. Based on the results, several formulations investigated have suitable properties for further development. A full analysis of the composition-product characteristic relationship of glasses being developed for immobilizing INTEC wastes will be performed at the completion of composition-property relationship phases of the CVS.
At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.
The Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 2 (SB2) and plans to initiate processing of SB3 in the spring of 2004. In addition, the Savannah River High Level Waste Division proposes to transfer existing excess Pu and Am/Cm materials through the Liquid Radioactive Waste Handling Facility directly to the Extended Sludge Process Facility. Current blending strategies have both the Pu and Am/Cm materials being vitrified within SB3 in the DWPF.