T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo , and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.
Exercise has a wide range of systemic effects. In animal models, repeated exertion reduces malignant tumor progression, and clinically, exercise can improve outcome for cancer patients. The etiology of the effect of exercise on tumor progression is unclear, as are the cellular actors involved. We show here that exercise-induced reduction in tumor growth is dependent on CD8+ T cells and that lactate, which is produced at high levels during exertion, increases proliferative capacity and cytotoxicity of CD8+ T cells. We found that at elevated levels lactate is used as a fuel during T cell activation. We further found that daily injections of lactate into animals can reduce malignant tumor growth in a dose- and CD8+ T cell-dependent manner. These data demonstrate that lactate can act to enhance expansion of cytotoxic T cells and in so doing reduce cancer progression.
Abstract Despite the intense global efforts towards an effective treatment of glioblastoma (GB), current therapeutic options are unsatisfactory with a median survival time of 12–15 months after diagnosis, which has not improved significantly over more than a decade. The high tumoral heterogeneity confers resistance to therapies, which has hindered a successful clinical outcome, GB remaining among the deadliest cancers. A hallmark of GB is its high recurrence rate, which has been attributed to the presence of a small subpopulation of tumor cells called GB stem-like cells (GSC). In the present work, the efficacy of a multimodal strategy combining microRNA (miRNA) modulation with new generation multitargeted tyrosine kinase inhibitors (imatinib and axitinib) was investigated aiming at tackling this subpopulation of GB cells. MiR-128 and miR-302a were selected as attractive therapeutic candidates on the basis of previous findings reporting that reestablishment of their decreased expression levels in GSC resulted in cell differentiation, which could represent a possible strategy to sensitize GSC to chemotherapy. Our results show that overexpression of miR-128 or miR-302a induced GSC differentiation, which enhanced senescence mediated by axitinib treatment, thus further impairing GSC proliferation. We also provided evidence for the capacity of GSC to efficiently internalize functionalized stable nucleic acid lipid particles, previously developed and successfully applied in our laboratory to target GB. Taken together, our findings will be important in the future design of a GB-targeted multimodal miRNA-based gene therapy, combining overexpression of miR-128 or miR-302a with axitinib treatment, endowed with the ability to overcome drug resistance.
Summary Oxygenation levels are a determinative factor in T cell function. Here we describe that the oxygen tensions sensed by T cells at the moment of activation act to persistently modulate both differentiation and function. We found that in a protocol of CAR-T cell generation, 24 hours of low oxygen levels during initial CD8 + T cell priming is sufficient to enhance antitumour cytotoxicity in a preclinical model. This is the case even when CAR-T cells are subsequently cultured under high oxygen tensions prior to adoptive transfer. Increased hypoxia inducible transcription factor (HIF) expression was able to alter T cell fate in a similar manner to exposure to low oxygen tensions; however, only a controlled or temporary increase in HIF signalling was able to consistently improve cytotoxic function of T cells. These data show that oxygenation levels during and immediately after T cell activation play an essential role in regulating T cell function.
Summary The metabolite 2-hydroxybutyrate (2HB) is produced by skeletal muscle acutely during exercise and persists for several hours in the blood post-exertion. We show here that 2HB directly inhibits branched- chain aminotransferase enzymes, and that this inhibition in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPβ mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity both in vitro and in vivo , with the latter mimicking the effects of exercise training on whole body metabolism. Thus, we show here that 2-HB production by skeletal muscle represents a novel mechanism for the modification of metabolism by exercise.
T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8