We investigated the association of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) thicknesses measured on optical coherence tomography (OCT) with the risk of developing dementia or stroke in a prospective population-based study. From the population-based Rotterdam study (2007–2012), we included persons aged ≥45 years who had gradable OCT images and were free from dementia and stroke at baseline. RNFL thickness was measured peripapillary in 3,585 persons, and GCL and IPL thicknesses were measured perimacular in 3,273 persons. Follow-up for dementia and stroke was complete till January 2015. Associations between retinal sublayer thickness and dementia and stroke were examined using Cox proportional hazards models, adjusting for age, sex, subcohort, axial length of the eye, education, and cardiovascular risk factors. Mean age was 68.9 years (standard deviation: 10.0). During 13315 person-years of follow-up (mean: 3.7 years), 88 persons developed dementia of whom 57 were Alzheimer's disease. Thinner RNFL at baseline was significantly associated with an increased risk of developing dementia, adjusted hazard ratio (HR) per standard deviation (SD) decrease in RNFL: 1.29 (95% confidence interval (CI): 1.06–1.56). For Alzheimer's disease, the adjusted HR was 1.31 (1.04–1.65) per SD decrease in RNFL. No association was found between GCL and IPL with the risk of dementia. None of the retinal sublayer thicknesses were related to the risk of stroke. Thinner RNFL at baseline was associated with an increased risk of dementia, particularly AD. These findings suggest that thinner RNFL may thus be a novel risk factor for overall dementia, and specifically for AD.
Purpose: To develop and validate a deep learning model for automatic segmentation of geographic atrophy (GA) in color fundus images (CFIs) and its application to study growth rate of GA. Participants: 409 CFIs of 238 eyes with GA from the Rotterdam Study (RS) and the Blue Mountain Eye Study (BMES) for model development, and 5,379 CFIs of 625 eyes from the Age-Related Eye Disease Study (AREDS) for analysis of GA growth rate. Methods: A deep learning model based on an ensemble of encoder-decoder architectures was implemented and optimized for the segmentation of GA in CFIs. Four experienced graders delineated GA in CFIs from RS and BMES. These manual delineations were used to evaluate the segmentation model using 5-fold cross-validation. The model was further applied to CFIs from the AREDS to study the growth rate of GA. Linear regression analysis was used to study associations between structural biomarkers at baseline and GA growth rate. A general estimate of the progression of GA area over time was made by combining growth rates of all eyes with GA from the AREDS set. Results: The model obtained an average Dice coefficient of 0.72 $\pm$ 0.26 on the BMES and RS. An intraclass correlation coefficient of 0.83 was reached between the automatically estimated GA area and the graders' consensus measures. Eight automatically calculated structural biomarkers (area, filled area, convex area, convex solidity, eccentricity, roundness, foveal involvement and perimeter) were significantly associated with growth rate. Combining all growth rates indicated that GA area grows quadratically up to an area of around 12 mm$^{2}$, after which growth rate stabilizes or decreases. Conclusion: The presented deep learning model allowed for fully automatic and robust segmentation of GA in CFIs. These segmentations can be used to extract structural characteristics of GA that predict its growth rate.
Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants.Genome-wide case-control association study of WES data.One thousand one hundred twenty-five AMD patients and 1361 control participants.A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes.Genetic variants associated with AMD.We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10-5). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane.This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD.
PurposeThe current study aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date, as well as aiming to determine the effect of AMD-associated genetic variants on metabolite levels and investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways.DesignCase-control association analysis of metabolomics data.ParticipantsFive European cohorts consisting of 2267 AMD patients and 4266 control participants.MethodsMetabolomics was performed using a high-throughput proton nuclear magnetic resonance metabolomics platform, which allows quantification of 146 metabolite measurements and 79 derivative values. Metabolome–AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d-to-C3 ratio) were investigated using linear regression.Main Outcome MeasuresMetabolites associated with AMD.ResultsWe identified 60 metabolites that were associated significantly with AMD, including increased levels of large and extra-large high-density lipoprotein (HDL) subclasses and decreased levels of very low-density lipoprotein (VLDL), amino acids, and citrate. Of 52 AMD-associated genetic variants, 7 variants were associated significantly with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, and LIPC) with metabolites belonging to the large and extra-large HDL subclasses. Also, 57 of 60 metabolites were associated significantly with complement activation levels, independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation.ConclusionsLipoprotein levels were associated with AMD-associated genetic variants, whereas decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD. The current study aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date, as well as aiming to determine the effect of AMD-associated genetic variants on metabolite levels and investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. Case-control association analysis of metabolomics data. Five European cohorts consisting of 2267 AMD patients and 4266 control participants. Metabolomics was performed using a high-throughput proton nuclear magnetic resonance metabolomics platform, which allows quantification of 146 metabolite measurements and 79 derivative values. Metabolome–AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d-to-C3 ratio) were investigated using linear regression. Metabolites associated with AMD. We identified 60 metabolites that were associated significantly with AMD, including increased levels of large and extra-large high-density lipoprotein (HDL) subclasses and decreased levels of very low-density lipoprotein (VLDL), amino acids, and citrate. Of 52 AMD-associated genetic variants, 7 variants were associated significantly with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, and LIPC) with metabolites belonging to the large and extra-large HDL subclasses. Also, 57 of 60 metabolites were associated significantly with complement activation levels, independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. Lipoprotein levels were associated with AMD-associated genetic variants, whereas decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD.