The present study describes the fabrication of Indium Tin Oxide /gold nanoparticles/nickel oxide/poly(Pyrrole-N-propionic acid) (ITO/GNPs/NiO/poly(PPA)) multilayered film, and its modification with Tyrosinase (Ty).The ITO/GNPs/ NiO/poly(PPA) electrode was fabricated by sequential electrochemical assembly onto ITO substrate which electrochemical deposition provides a facile, inexpensive technique for synthesis of multilayered film within the adherent morphology with controllable film thickness.Cyclic voltammetry (CV), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), scanning electron microcopy (SEM), and atomic force microcopy (AFM) were used to characterize the film assembly processes.The properties of a semiconductor/electrolyte interface were investigated based on the Mott-Schottky (M-S) approach for the modified electrodes, with the flat band potential (E FB ) according to the potential intercept and the carrier density (N D ) according to the linear slopes.The N D and E FB of ITO/GNPs/NiO/poly(PPA) were obtained as 2.48•10 21 cm -3 and 0.26 V, respectively.Tyrosinase was immobilized using carbodiimide coupling reaction.The bioelectrode was characterized by FTIR-ATR, SEM, AFM, electrochemical impedance spectroscopy (EIS).A Randles equivalent circuit was introduced for modeling the performance of impedimetric biosensing for the detection of the dopamine (DP) and the interface of bioelectrode/electrolyte.The EIS of the ITO/GNPs/NiO/poly(PPA)-Ty exhibited significant changes in the charge transfer resistance (R CT ) value toward the detection of dopamine over a linear range of 80 µM to 0.2 mM with a limit of detection (LOD) of 5.46 µM.
In pelvic organ prolapse (POP) patients, the uterus, bladder and/or rectum descends into vagina due to weakened support tissues. High recurrence rates after POP surgery suggest an urgent need for improved surgical outcomes. Our aim is to promote connective tissue healing that results in stimulated tissue support functions by surgically applying a hydrogel functionalized with biological cues. We used known vaginal wound healing promoting factors (basic fibroblast growth factor, β-estradiol, adipose-derived stem cells) in the biomimetic and injectable polyisocyanide (PIC) hydrogel, which in itself induces regenerative vaginal fibroblast behavior. The regenerative capacity of injected PIC hydrogel, and the additional pro-regenerative effects of these bioactive factors was evaluated in abdominal wounds in rabbits. Assessment of connective tissue healing (tensile testing, histology, immunohistochemistry) revealed that injection with all PIC formulations resulted in a statistically significant stiffness and collagen increase over time, in contrast to sham. Histological evaluation indicated new tissue growth with moderate to mild immune activity at the hydrogel - tissue interface. The results suggest that PIC injection in an abdominal wound improves healing towards regaining load-bearing capacity, which encourages us to investigate application of the hydrogel in a more translational vaginal model for POP surgery in sheep.
To describe effects of non-ablative erbium-doped:yttrium-aluminium-garnet (Er:YAG) laser on vaginal atrophy induced by iatrogenic menopause in the ewe.Animal experimental, randomised, sham and estrogen-treatment controlled study with blinding for primary outcome.KU Leuven, Belgium.Twenty-four ewes.Menopause was surgically induced, after which the ewes were randomised to three groups receiving vaginal Er:YAG laser application three times, with a 1-month interval; three sham manipulations with a 1-month interval; or estrogen replacement and sham manipulations. At given intervals, ewes were clinically examined and vaginal wall biopsies were taken. Vaginal compliance was determined by passive biomechanical testing from explants taken at autopsy.Vaginal epithelial thickness (primary), composition of the lamina propria (collagen, elastin, glycogen and vessel content), vaginal compliance, clinical signs.Animals exposed to Er:YAG laser application and sham manipulation, but not to estrogens, displayed a significant and comparable increase in vaginal epithelial thickness between baseline and 7 days after the third application (69% and 67%, respectively, both P < 0.0008). In laser-treated ewes, temporary vaginal discharge and limited thermal injury were observed. Estrogen-substituted ewes displayed a more prominent increase in epithelial thickness (202%; P < 0.0001) and higher vaginal compliance (P < 0.05). None of the interventions induced changes in the lamina propria.Vaginal Er:YAG laser has comparable effect to sham manipulation in menopausal ewes.Vaginal Er:YAG laser has comparable effect to sham manipulation in menopausal ewes #LASER #GSM #RCT.
Polypropylene (PP) implants for the vaginal surgical correction of pelvic organ prolapse (POP) are known for adverse events, like vaginal or visceral exposures. It is hypothesized that this is a result of a prolonged inflammatory response. One of the triggering factors of prolonged inflammation might be bacterial contamination. A possible solution might lie in an absorbable biomaterial, which provides initial mechanical support while being gradually replaced by the host tissue. With this study we aimed to compare the host response, in a subcutaneous mouse implant infection model, to delayed absorbable poly-4-hydroxybutyrate (P4HB) and a latest generation PP implant. By comparing non-infected to Staphylococcus aureus infected mice, we assessed how bacterial contamination affects the host response and its role in the development of complications. Further, we included sham surgery as a control, mimicking the wound response in native tissue repair. Despite the higher surface area of the P4HB implants, the clearance of infection was similarly delayed in the presence of a P4HB or PP implant, as compared to sham. Further, the host response towards P4HB and PP was quite comparable, yet collagen deposition was significantly increased around infected P4HB implants at early time points. Adverse event rates were similar, though implant exposures were only seen in infected mice and more often with PP (11.1%) than P4HB implants (5.6%). Infected mice overall had significantly higher levels of infiltration of inflammatory cells and lower levels of vascularization and collagen deposition compared to non-infected mice. Thus, for both P4HB and PP, bacterial contamination negatively affected mesh integration by increased inflammation and an increased adverse event rate. Altogether, our results from this subcutaneous mouse implant infection study suggest that P4HB could be a promising degradable alternative to PP, warranting further research to study its potential as a new surgical solution for women with POP.
Amniotic membrane (AM) has great potential as a scaffold for tissue regeneration in reconstructive surgery. To date, no systematic review of the literature has been performed for the applications of AM in wound closure of internal organs. Therefore, in this systematic review and meta-analysis, we summarize the literature on the safety and efficacy of AM for the closure of internal organs. A systematic search was performed in MEDLINE-PubMed database and OVID Embase to retrieve human and controlled animal studies on wound closure of internal organs. The Cochrane Risk of Bias tool for randomized clinical trials and the SYRCLE risk of bias tool for animal studies were used. Meta-analyses (MAs) were conducted for controlled animal studies to assess efficacy of closure, mortality and complications in subjects who underwent surgical wound closure in internal organs with the application of AM. Sixty references containing 26 human experiments and 36 animal experiments were included. The MAs of the controlled animal studies showed comparable results with regard to closure, mortality and complications, and suggested improved mechanical strength and lower inflammation scores after AM application when compared to standard surgical closure techniques. This systematic review and MAs demonstrate that the application of AM to promote wound healing of internal organs appears to be safe, efficacious, and feasible.
Surgical outcomes of pelvic organ prolapse (POP) surgery are poor, resulting in a 20% recurrence risk. Following the hypothesis that impaired wound healing is the main determinant of recurrent POP, growth factors have the potential to promote wound healing and may improve surgical outcomes. In this study, we systematically reviewed the effect of growth factors on vaginal wound healing in both in vitro and animal studies. For each independent comparison, the standardized mean difference and 95% CI were calculated using the Hedges' g correction. Of the 3858 retrieved studies, seven studies were included, of which six were included in meta-analysis (three in vitro studies and four in vivo studies). In vitro, basic fibroblast growth factor (bFGF) promotes proliferation, differentiation, and collagen types I and III production. Epidermal growth factor stimulates proliferation and connective tissue growth factor promotes Tenascin-C expression. These effects, however, are less pronounced in vivo; only bFGF slightly promotes collagen production. The review shows that growth factors, particularly bFGF, are able to promote vaginal wound healing in vitro. The uncertain in vivo findings suggest that preclinical models should be improved. The ultimate goal is to develop effective growth factor-supplemented therapies that improve surgical outcomes for POP.
An electrospun poly( m-anthranilic acid)/poly(ε-caprolactone) nanofiber mat was fabricated with functionalization of the surface with streptavidin which can enhance the cell attachment and proliferation. Poly(ε-caprolactone) as biodegradable, biocompatible, and electrospinnable polymer was blended with poly( m-anthranilic acid) because of the carboxylic acid (–COOH) groups on its backbone which allow the covalent immobilization of streptavidin onto nanofibers. 1-Ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride/ N-hydroxyl succinimide coupling reaction was used for immobilization and the presence of bound protein was investigated by Fourier transform infrared–attenuated total reflection spectroscopy and electrochemical impedance spectroscopy, as well as the confocal microscopy. Human osteoblast-like cells (SaOS 2 ) were cultured on poly( m-anthranilic acid)/poly(ε-caprolactone) and streptavidin-immobilized poly( m-anthranilic acid)/poly(ε-caprolactone) nanofibers to evaluate the in vitro biocompatibility of nanofibers. Fluorescence staining of F-actin was performed to observe the cell morphology. The results confirmed the successful immobilization of streptavidin on the nanofibers and streptavidin immobilization enhanced the cell attachment and proliferation onto the poly( m-anthranilic acid)/poly(ε-caprolactone) nanofibers.