Chasmagnathus granulata phosphoenolpyruvate carboxykinase (PEPCK) cDNA from jaw muscle was cloned and sequenced, showing a specific domain to bind phosphoenolpyruvate in addition to the kinase‐1 and kinase‐2 motifs to bind guanosine triphosphate (GTP) and Mg 2+ , respectively, specific for all PEPCKs. In the kinase‐1 motifs the GK was changed to RK. The first 19 amino acids of the putative enzyme contain hydrophobic amino acids and hydroxylated residues specific to a mitochondrial type signal. The PEPCK is expressed in hepatopancreas, muscles, nervous system, heart, and gills. Hyperosmotic stress for 24 h increased the PEPCK mRNA level, gluconeogenic and PEPCK activities in muscle.
In this paper, two methods for assessing the degree of melanization of pupal exuviae from the butterfly Heliconius erato phyllis, Fabricius 1775 (Lepidoptera, Nymphalidae, Heliconiini) are compared. In the first method, which was qualitative, the exuviae were classified by scoring the degree of melanization, whereas in the second method, which was quantitative, the exuviae were classified by optical density followed by analysis with appropriate software. The heritability (h(2)) of the degree of melanization was estimated by regression and analysis of variance. The estimates of h (2) were similar with both methods, indicating that the qualitative method could be particularly suitable for field work. The low estimates obtained for heritability may have resulted from the small sample size (n = 7-18 broods, including the parents) or from the allocation-priority hypothesis in which pupal color would be a lower priority trait compared to morphological traits and adequate larval development.
Abstract: Hormonal fluctuations during the different estrous cycle are a well-recognized cause of insulin resistance in bitches, and little is known about insulin receptor binding or post-binding defects associated with insulin resistance in dogs. To evaluate insulin binding characteristics in muscle tissue of bitches during the estrous cycle, 17 owned bitches were used in the study (six in anestrus, five in estrus, and six in diestrus). An intravenous glucose tolerance test (IVGTT) was performed in all patients by means of injection of 1mL/kg of a glucose 50% solution (500mg/kg), with blood sample collection for glucose determination at 0, 3, 5, 7, 15, 30, 45 and 60 minutes after glucose infusion. Muscle samples, taken after spaying surgery, were immediately frozen in liquid nitrogen and then stored at -80 ºC until the membranes were prepared by sequential centrifugation after being homogenized. For binding studies, membranes were incubated in the presence of 20,000cpm of human 125I-insulin and in increasing concentrations of unlabeled human regular insulin for cold saturation. The IVGTT showed no differences among bitches during the estrous cycle regarding baseline glycemia or glycemic response after glucose infusion. Two insulin binding sites - high-affinity and low-affinity ones - were detected by Scatchard analysis, and significant statistical differences were observed in the dissociation constant (Kd1) and maximum binding capacity (Bmax1) of the high-affinity binding sites. The Kd1 for the anestrus group (6.54±2.77nM/mg of protein) was smaller (P<0.001) than for the estrus (28.54±6.94nM/mg of protein) and diestrus (15.56±3.88nM/mg of protein) groups. Bmax1 in the estrus (0.83±0.42nM/mg of protein) and diestrus (1.24±0.24nM/mg of protein) groups were also higher (P<0.001) than the values observed in anestrus (0.35±0.06nM/mg of protein). These results indicate modulation of insulin binding characteristics during different phases of the estrous cycle in dogs, showing that muscle insulin binding affinity for its receptor is reduced during estrus and diestrus. However, this poor hormone-receptor affinity is compensated for by a greater total binding capacity, once there is no difference in patients' glycemic response after an intravenous glucose load.