Female reproductive potential is dictated by the size of the primordial follicle pool and the correct regulation of oocyte maturation and activation—events essential for production of viable offspring. Although a substantial body of work underpins our understanding of these processes, the molecular mechanisms of follicular and oocyte development are not fully understood. This review summarizes recent findings which have improved our conception of how folliculogenesis and oocyte competence are regulated, and discusses their implications for assisted reproductive techniques. We highlight evidence provided by genetically modified mouse models and in vitro studies which have refined our understanding of Pi3k/Akt and mTOR signalling in the oocyte and have discovered a role for Jak/Stat/Socs signalling in granulosa cells during primordial follicle activation. We also appraise a novel role for the metal ion zinc in the regulation of meiosis I and meiosis II progression through early meiosis inhibitor (Emi2) and Mos-Mapk signalling, and examine studies which expand our understanding of intracellular calcium signalling and extrinsic Plcζ in stimulating oocyte activation.
A prevalent cause of sperm dysfunction in male infertility patients is the overproduction of reactive oxygen species, an attendant increase in lipid peroxidation and the production of cytotoxic reactive carbonyl species such as 4-hydroxynonenal. Our previous studies have implicated arachidonate 15-lipoxygenase (ALOX15) in the production of 4-hydroxynonenal in developing germ cells. Here, we have aimed to develop a further mechanistic understanding of the lipoxygenase-lipid peroxidation pathway in human spermatozoa. Through pharmacological inhibition studies, we identified a protective role for phospholipase enzymes in the liberation of peroxidised polyunsaturated fatty acids from the human sperm membrane. Our results also revealed that arachidonic acid, linoleic acid and docosahexanoic acid are key polyunsaturated fatty acid substrates for ALOX15. Upon examination of ALOX15 in the spermatozoa of infertile patients compared to their normozoospermic counterparts, we observed significantly elevated levels of ALOX15 protein abundance in the infertile population and an increase in 4-hydroxynonenal adducts. Collectively, these data confirm the involvement of ALOX15 in the oxidative stress cascade of human spermatozoa and support the notion that increased ALOX15 abundance in sperm cells may accentuate membrane lipid peroxidation and cellular dysfunction, ultimately contributing to male infertility.
A growing body of research has confirmed that nanoparticle (NP) systems can enhance delivery of therapeutic and imaging agents as well as prevent potentially damaging systemic exposure to these agents by modifying the kinetics of their release. With a wide choice of NP materials possessing different properties and surface modification options with unique targeting agents, bespoke nanosystems have been developed for applications varying from cancer therapeutics and genetic modification to cell imaging. Although there remain many challenges for the clinical application of nanoparticles, including toxicity within the reproductive system, some of these may be overcome with the recent development of biodegradable nanoparticles that offer increased biocompatibility. In recognition of this potential, this review seeks to present recent NP research with a focus on the exciting possibilities posed by the application of biocompatible nanomaterials within the fields of male reproductive medicine, health, and research.
<b><i>Background:</i></b> Oocytes are a finite and non-renewable resource that are maintained in primordial follicle structures. The ovarian reserve is the totality of primordial follicles, present from birth, within the ovary and its establishment, size, and maintenance dictates the duration of the female reproductive lifespan. Understanding the cellular and molecular dynamics relevant to the establishment and maintenance of the reserve provides the first steps necessary for modulating both individual human and animal reproductive health as well as population dynamics. <b><i>Summary:</i></b> This review details the key stages of establishment and maintenance of the ovarian reserve, encompassing germ cell nest formation, germ cell nest breakdown, and primordial follicle formation and activation. Furthermore, we spotlight several formative single-cell sequencing studies that have significantly advanced our knowledge of novel molecular regulators of the ovarian reserve, which may improve our ability to modulate female reproductive lifespans. <b><i>Key Messages:</i></b> The application of single-cell sequencing to studies of ovarian development in mammals, especially when leveraging genetic and environmental models, offers significant insights into fertility and its regulation. Moreover, comparative studies looking at key stages in the development of the ovarian reserve across species has the potential to impact not just human fertility, but also conservation biology, invasive species management, and agriculture.
During folliculogenesis, oocytes are dependent on metabolic and molecular support from surrounding somatic cells. Here, we examined the role of the dynamin (DNM) family of mechanoenzymes in mediating endocytotic uptake into growing follicular oocytes. We found DNM1 and DNM2 to be highly expressed in growing follicular oocytes as well as in mature germinal vesicle (GV) and metaphase II (MII) stage oocytes. Moreover, oocyte-specific conditional knockout (cKO) of DNM2 (DNM2Δ) led to complete sterility, with follicles arresting at the preantral stage of development. In addition, DNM2Δ ovaries were characterized by disrupted follicular growth as well as oocyte and follicle apoptosis. Further, the loss of DNM activity, either through DNM2 cKO or through pharmacological inhibition (Dyngo 6a) led to the impairment of endocytotic pathways in preantral oocytes as well as in mature GV and MII oocytes, respectively. Loss of DNM activity resulted in the redistribution of endosomes and the misslocalization of clathrin and actin, suggesting dysfunctional endocytosis. Notably, there was no observable effect on the fertility of DNM1Δ females. Our study has provided new insight into the complex and dynamic nature of oocyte growth during folliculogenesis, suggesting a role for DNM2 in mediating the endocytotic events that are essential for oocyte development.
Characterizing the mechanisms underlying follicle development in the ovary is crucial to understanding female fertility and is an area of increasing research interest. The RNA binding protein Musashi is essential for post-transcriptional regulation of oocyte maturation in Xenopus and is expressed during ovarian development in Drosophila. In mammals Musashi is important for spermatogenesis and male fertility, but its role in the ovary has yet to be characterized. In this study we determined the expression of mammalian Musashi proteins MSI1 and MSI2 during mouse folliculogenesis, and through the use of a MSI2-specific knockout mouse model we identified that MSI2 is essential for normal follicle development. Time-course characterization of MSI1 and MSI2 revealed distinct differences in steady-state mRNA levels and protein expression/localization at important developmental time-points during folliculogenesis. Using a gene-trap mouse model that inactivates Msi2, we observed a significant decrease in ovarian mass, and change in follicle-stage composition due to developmental blocking of antral stage follicles and pre-antral follicle loss through atresia. We also confirmed that hormonally stimulated Msi2-deficient mice produce significantly fewer MII oocytes (60.9% less than controls, p < 0.05). Furthermore, the majority of these oocytes are of poor viability (62.2% non-viable/apoptotic, p < 0.05), which causes a reduction in female fertility evidenced by decreased litter size in Msi2-deficient animals (33.1% reduction to controls, p < 0.05). Our findings indicate that MSI1 and MSI2 display distinct expression profiles during mammalian folliculogenesis and that MSI2 is required for pre-antral follicle development.