SOFRADIR is a worldwide leader on the cooled infrared (IR) detector market for high-performance space, military and security applications thanks to a high maturity Mercury Cadmium Telluride (MCT) technology, and III-V technology: InGaAs, and QWIP quantum detectors. As a result, strong and continuous development efforts are deployed to deliver cutting edge products with improved performances in terms of spatial and thermal resolution, dark current, quantum efficiency, low excess noise and high operability. The current trend in quantum IR detector development is the design of very small pixel, operating at higher temperatures. In this context, keeping high image quality is a key challenge. This paper discusses the relevant criteria to quantify image quality: the Modulation Transfer Function (MTF) and the Residual Fixed Pattern Noise (RFPN). State of the art relevant performances for IR detection and imaging will be presented for Daphnis MW product, 10μm pitch XGA/HD720 extended MW matrix (cut-off wavelength 5.3μm) operating at 110K: range improvement, digital ROIC optimization, NUC (Non Uniformity Correction) table stability. Projections and results for smaller pixel pitch are also detailed.
This paper presents an overview of the very recent developments of the MCT infrared detector technology developed by CEA-LETI and Sofradir in France. New applications require high sensitivity, higher operating temperature and dual band detectors. The standard n on p technology in production at Sofradir for 25 years is well mastered with an extremely robust and reliable process. Sofradir's interest in p on n technology opens the perspective of reducing dark current of diodes so detectors could operate in lower flux or higher operating temperature. In parallel, MCT Avalanche Photo Diodes (APD) have demonstrated ideal performances for low flux and high speed application like laser gated imaging during the last few years. This technology also opens new prospects on next generation of imaging detectors for compact, low flux and low power applications. Regarding 3rd Gen IR detectors, the development of dual-band infrared detectors has been the core of intense research and technological improvements for the last ten years. New TV (640 x 512 pixels) format MWIR/LWIR detectors on 20μm pixel pitch, made from Molecular Beam Epitaxy, has been developed with dedicated Read-Out Integrated Circuit (ROIC) for real simultaneous detection and maximum SNR. Technological and products achievements, as well as latest results and performances are presented outlining the availability of p/n, avalanche photodiodes and dual band technologies for new applications at system level.
SOFRADIR is the worldwide leader on the cooled IR detector market for high-performance space, military and security applications thanks to a well mastered Mercury Cadmium Telluride (MCT) technology, and recently thanks to the acquisition of III-V technology: InSb, InGaAs, and QWIP quantum detectors. This is the result of strong and continuous development efforts to deliver cutting edge products with improved performances in terms of spatial and thermal resolution, dark current, quantum efficiency, low excess noise and high operability. On one hand the advanced performances of Sofradir product rely on a strong partnership with CEA-LETI materialized in a common laboratory named DEFIR. On the other hand, these cutting edge performances are made possible thanks to Sofradir vertical industrial model. From the CdZnTe (CZT) and HgCdTe (MCT) crystal growth to the last electro-optical characterization recipe before shipping, and all the intermediate steps in between like IDDCA (Integrated Detector Dewar Cooler Assembly) final pumping cycle, all the manufacturing steps are developed, performed and controlled inhouse. This allows direct feedback between IDDCA, system performances and process or material. State of the art relevant performances for IR detection and imaging will be presented, that is to say low excess noise defects, RFPN (Residual Fixed Pattern Noise), NUC (Non Uniformity Correction) table stability for Daphnis product, 10μm pitch XGA extended MW matrix at 110K and HOT (High Operating Temperature) p-on-n technology, VGA format with 15μm pitch MW at 160K.
Sofradir was first to show a 10μm focal plane array (FPA) in DSS 2012, and announced the DAPHNIS 10μm product family back in 2014. This pixel pitch is key for enabling more compact sensors and increased resolution. SOFRADIR recently achieved outstanding MTF demonstration at this pixel pitch, which clearly demonstrate the benefit to users of adopting 10μm pixel pitch focal plane array based detectors. The last results, and associated gain in detection performance, are discussed in this paper. Concurrently to pitch downsizing, SOFRADIR also works on a global offer using digital interfaces and smart pixel functionalities. This opens the road to enhanced functionalities such as improved image quality, higher frame rate, lower power consumption and optimum operation for wide thermal conditions scenes. This paper also discusses these enhanced features and strategies allowing easier integration of the detector in the system.
Recent advances in miniaturization of IR imaging technology have led to a burgeoning market for mini thermalimaging sensors. Seen in this context our development on smaller pixel pitch has opened the door to very compact products. When this competitive advantage is mixed with smaller coolers, thanks to HOT technology, we achieve valuable reductions in size, weight and power of the overall package. In the same time, we are moving towards a global offer based on digital interfaces that provides our customers lower power consumption and simplification on the IR system design process while freeing up more space. Additionally, we are also investigating new wafer level camera solution taking advantage of the progress in micro-optics. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI and ONERA.