Apoptosis is accompanied by major changes in ion compartmentalization and transmembrane potentials. Thymocyte apoptosis is characterized by an early dissipation of the mitochondrial transmembrane potential, with transient mitochondrial swelling and a subsequent loss of plasma membrane potential (DeltaP sip) related to the loss of cytosolic K+, cellular shrinkage, and DNA fragmentation. Thus, a gross perturbation of DeltaPsip occurs at the postmitochondrial stage of apoptosis. Unexpectedly, we found that blockade of plasma membrane K+ channels by tetrapentylammonium (TPA), which leads to a DeltaP sip collapse, can prevent the thymocyte apoptosis induced by exposure to the glucocorticoid receptor agonist dexamethasone, the topoisomerase inhibitor etoposide, gamma-irradiation, or ceramide. The TPA-mediated protective effect extends to all features of apoptosis, including dissipation of the mitochondrial transmembrane potential, loss of cytosolic K+, phosphatidylserine exposure on the cell surface, chromatin condensation, as well as caspase and endonuclease activation. In strict contrast, TPA is an ineffective inhibitor when cell death is induced by the potassium ionophore valinomycin, the specific mitochondrial benzodiazepine ligand PK11195, or by primary caspase activation by Fas/CD95 cross-linking. These results underline the importance of K+ channels for the regulation of some but not all pathways leading to thymocyte apoptosis.
Apoptosis inducing factor (AIF) is a novel apoptotic effector protein that induces chromatin condensation and large-scale ( approximately 50 kbp) DNA fragmentation when added to purified nuclei in vitro. Confocal and electron microscopy reveal that, in normal cells, AIF is strictly confined to mitochondria and thus colocalizes with heat shock protein 60 (hsp60). On induction of apoptosis by staurosporin, c-Myc, etoposide, or ceramide, AIF (but not hsp60) translocates to the nucleus. This suggests that only the outer mitochondrial membrane (which retains AIF in the intermembrane space) but not the inner membrane (which retains hsp60 in the matrix) becomes protein permeable. The mitochondrio-nuclear redistribution of AIF is prevented by a Bcl-2 protein specifically targeted to mitochondrial membranes. The pan-caspase inhibitor Z-VAD. fmk does not prevent the staurosporin-induced translocation of AIF, although it does inhibit oligonucleosomal DNA fragmentation and arrests chromatin condensation at an early stage. ATP depletion is sufficient to cause AIF translocation to the nucleus, and this phenomenon is accelerated by the apoptosis inducer staurosporin. However, in conditions in which both glycolytic and respiratory ATP generation is inhibited, cells fail to manifest any sign of chromatin condensation and advanced DNA fragmentation, thus manifesting a 'necrotic' phenotype. Both in the presence of Z-VAD. fmk and in conditions of ATP depletion, AIF translocation correlates with the appearance of large-scale DNA fragmentation. Altogether, these data are compatible with the hypothesis that AIF is a caspase-independent mitochondrial death effector responsible for partial chromatinolysis.
Anucleate cells can be induced to undergo programmed cell death (PCD), indicating the existence of a cytoplasmic PCD pathway that functions independently from the nucleus. Cytoplasmic structures including mitochondria have been shown to participate in the control of apoptotic nuclear disintegration. Before cells exhibit common signs of nuclear apoptosis (chromatin condensation and endonuclease-mediated DNA fragmentation), they undergo a reduction of the mitochondrial transmembrane potential (delta psi m) that may be due to the opening of mitochondrial permeability transition (PT) pores. Here, we present direct evidence indicating that mitochondrial PT constitutes a critical early event of the apoptotic process. In a cell-free system combining purified mitochondria and nuclei, mitochondria undergoing PT suffice to induce chromatin condensation and DNA fragmentation. Induction of PT by pharmacological agents augments the apoptosis-inducing potential of mitochondria. In contrast, prevention of PT by pharmacological agents impedes nuclear apoptosis, both in vitro and in vivo. Mitochondria from hepatocytes or lymphoid cells undergoing apoptosis, but not those from normal cells, induce disintegration of isolated Hela nuclei. A specific ligand of the mitochondrial adenine nucleotide translocator (ANT), bongkreik acid, inhibits PT and reduces apoptosis induction by mitochondria in a cell-free system. Moreover, it inhibits the induction of apoptosis in intact cells. Several pieces of evidence suggest that the proto-oncogene product Bcl-2 inhibits apoptosis by preventing mitochondrial PT. First, to inhibit nuclear apoptosis, Bcl-2 must be localized in mitochondrial but not nuclear membranes. Second, transfection-enforced hyperexpression of Bcl-2 directly abolishes the induction of mitochondrial PT in response to a protonophore, a pro-oxidant, as well as to the ANT ligand atractyloside, correlating with its apoptosis-inhibitory effect. In conclusion, mitochondrial PT appears to be a critical step of the apoptotic cascade.
La plupart des cellules animales peuvent mourir par un processus de mort cellulaire que l'on applelle apoptose. Les proteines cellulaires impliquees dans ce processus d'autodestruction ont relativement peu change depuis la dichotomie nematodes/vertebres. Il apparait maintenant que les mitochondries occupent une place determinante dans le controle de l'apoptose. Chez les mammiferes, comme chez les nematodes, les proteines de la famille Bcl-2/Bcl-X/Ced-9 inhibent l'apoptose au moins a deux niveaux : regulation du passage d'ions ou de molecules pro-apoptotiques au travers de pores transmembranaires, et ancrage, au niveau des mitochondries, des proteines impliquees dans la transduction de signaux apoptotiques. Par ailleurs, il est maintenat admis que les mitochondries sont des endosymbiontes ayant pour origine une bacterie aerobie qui aurait ete absorbee par l'ancetre des cellules eucaryotes. Une partie de la machinerie apoptotique existerait chez les eucaryotes unicellulaires et certains des composants controlant l'apoptose pourraient meme etre presents chez les bacteries. Il est donc possible que le mecanisme a l'origine du maintien de la symbiose entre la bacterie ancetre des mitochondries et la cellule hote a l'origine des eucaryotes ait fourni les bases d'un controle de la survie cellulaire. Les metazoaires auraient exploite cette possibilite en connectant les effecteurs mitochondriaux de la mort cellulaire aux voies de transduction de signaux.
Abstract Cystic fibrosis is a disease caused by defective function of a chloride channel coupled to a blockade of autophagic flux. It has been proposed to use synthetic chloride transporters as pharmacological agents to compensate insufficient chloride fluxes. Here, we report that such chloride anionophores block autophagic flux in spite of the fact that they activate the pro-autophagic transcription factor EB (TFEB) coupled to the inhibition of the autophagy-suppressive mTORC1 kinase activity. Two synthetic chloride transporters ( SQ1 and SQ2 ) caused a partially TFEB-dependent relocation of the autophagic marker LC3 to the Golgi apparatus. Inhibition of TFEB activation using a calcium chelator or calcineurin inhibitors reduced the formation of LC3 puncta in cells, yet did not affect the cytotoxic action of SQ1 and SQ2 that could be observed after prolonged incubation. In conclusion, the squaramide-based synthetic chloride transporters studied in this work (which can also dissipate pH gradients) are probably not appropriate for the treatment of cystic fibrosis yet might be used for other indications such as cancer.