Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCCmec) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCCmec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production.Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production.
Retail poultry products are known sources of antibiotic-resistant Escherichia coli, a major human health concern. Consumers have a range of choices for poultry, including conventional, organic, kosher, and raised without antibiotics (RWA)-designations that are perceived to indicate differences in quality and safety. However, whether these categories vary in the frequency of contamination with antibiotic-resistant E. coli is unknown. We examined the occurrence of antibiotic-resistant E. coli on raw chicken marketed as conventional, organic, kosher and RWA. From April – June 2012, we purchased 213 samples of raw chicken from 15 locations in the New York City metropolitan area. We screened E. coli isolates from each sample for resistance to 12 common antibiotics. Although the organic and RWA labels restrict the use of antibiotics, the frequency of antibiotic-resistant E. coli tended to be only slightly lower for RWA, and organic chicken was statistically indistinguishable from conventional products that have no restrictions. Kosher chicken had the highest frequency of antibiotic-resistant E. coli, nearly twice that of conventional products, a result that belies the historical roots of kosher as a means to ensure food safety. These results indicate that production methods influence the frequency of antibiotic-resistant E. coli on poultry products available to consumers. Future research to identify the specific practices that cause the high frequency of antibiotic-resistant E. coli in kosher chicken could promote efforts to reduce consumer exposure to this potential pathogen.
Carbapenemase-producing, carbapenem-resistant Enterobacteriaceae, or CP-CRE, are an emerging threat to human and animal health, because they are resistant to many of the last-line antimicrobials available for disease treatment. Carbapenemase-producing Enterobacter cloacae harboring blaKPC-3 recently was reported in the upper midwestern United States and implicated in a hospital outbreak in Fargo, North Dakota (L. M. Kiedrowski, D. M. Guerrero, F. Perez, R. A. Viau, L. J. Rojas, M. F. Mojica, S. D. Rudin, A. M. Hujer, S. H. Marshall, and R. A. Bonomo, Emerg Infect Dis 20:1583-1585, 2014, http://dx.doi.org/10.3201/eid2009.140344). In early 2009, the Minnesota Department of Health began collecting and screening CP-CRE from patients throughout Minnesota. Here, we analyzed a retrospective group of CP-E. cloacae isolates (n = 34) collected between 2009 and 2013. Whole-genome sequencing and analysis revealed that 32 of the strains were clonal, belonging to the ST171 clonal complex and differing collectively by 211 single-nucleotide polymorphisms, and it revealed a dynamic clone under positive selection. The phylogeography of these strains suggests that this clone existed in eastern North Dakota and western Minnesota prior to 2009 and subsequently was identified in the Minneapolis and St. Paul metropolitan area. All strains harbored identical IncFIA-like plasmids conferring a CP-CRE phenotype and an additional IncX3 plasmid. In a single patient with multiple isolates submitted over several months, we found evidence that these plasmids had transferred from the E. cloacae clone to an Escherichia coli ST131 bacterium, rendering it as a CP-CRE. The spread of this clone throughout the upper midwestern United States is unprecedented for E. cloacae and highlights the importance of continued surveillance to identify such threats to human health.
APEC causes a range of infections in poultry, collectively called colibacillosis, and is the leading cause of mortality and is associated with major economic significance in the poultry industry. A growing number of studies have suggested APEC as an external reservoir of human ExPEC, including UPEC, which is a reservoir. ExPEC belonging to ST95 is considered one of the most important pathogens in both poultry and humans. This study is the first in-depth whole-genome-based comparison of ST95 E. coli which investigates both the core genomes as well as the accessory genomes of avian and human ExPEC. We demonstrated that multiple lineages of ExPEC belonging to ST95 exist, of which the majority may cause infection in humans, while only part of the ST95 cluster seem to be avian pathogenic. These findings further support the idea that urinary tract infections may be a zoonotic infection.
Abstract Background Klebsiella pneumoniae is a frequent cause of neonatal sepsis and carries a high mortality rate in lower and middle-income countries (LMICs). From March-November 2015, two Jamaican hospitals experienced K. pneumoniae outbreaks in their Special Care Nurseries (SCNs). New admissions to both SCNs were temporarily halted while additional infection control strategies were implemented. 31 babies were infected, of which 15 died. International collaboration was requested to help investigate if the sepsis cases were nosocomial transmission, repeated introductions from the community, or both using whole-genome sequencing Methods We sequenced DNA from 19 outbreak isolates (n = 13 from Hospital A, n = 6 from Hospital B) on an Illumina HiSeq2500 instrument and assembled short-reads using SPAdes. We used ResFinder v3.1.0 to screen resistance genes and assigned MLSTs using in-house scripts. To compare the outbreak isolates, we selected a reference genome from among the assembled isolates, aligned raw reads using the Burrows–Wheeler Aligner (BWA), identified SNPs using GATK UnifiedGenotyper, and removed the recombined regions using Gubbins v2.3.4. We further contextualized the 19 outbreak isolates against a global collection of more than 300 K. pneumoniae genomes. Results All 13 isolates from Hospital A appeared to be from a single source. All were ST45 and encoded blaCTX-M-15, which confers extended-spectrum β-lactam (ESBL) resistance. Five of 6 isolates from Hospital B appeared to be from a separate, single source. These 5 isolates were ST268 and susceptible to most antibiotics. 1 isolate from Hospital B was ST628, encoded blaCTX-M-15, and grouped separately from other Hospital B outbreak isolates. Hospital A and B outbreak isolates formed independent, unique clades within a global K. pneumoniae collection. Conclusion Our findings indicate nosocomial transmission was responsible for both neonatal K. pneumoniae outbreaks, rather than repeat introductions from the community. The main sequence types we detected (ST45 and ST268) are not known pandemic clones and may circulate regionally. Multifaceted infection control measures were implemented for effectively halting outbreaks. Disclosures All authors: No reported disclosures.
ABSTRACT Mutants of attenuated Bacillus anthracis with high-level ciprofloxacin resistance were isolated using a three-step in vitro selection. Ciprofloxacin MICs were 0.5 μg/ml for first-step mutants, which had one of two gyrA quinolone resistance-determining region (QRDR) mutations. Ciprofloxacin MICs were 8 and 16 μg/ml for second-step mutants, which had one of three parC QRDR mutations. Ciprofloxacin MICs for third-step mutants were 32 and 64 μg/ml. Mutants for which MICs were 64 μg/ml had one of two additional mutations within the gyrA QRDR or one of two mutations within the gyrB QRDR. Mutants for which MICs were 32 μg/ml had no additional target modifications but showed evidence of enhanced ciprofloxacin efflux.
The distinguishing characteristics of extraintestinal pathogenic Escherichia coli (ExPEC) strains are incompletely defined. We characterized 292 diverse-source human Escherichia coli isolates (116 from fecal specimens, 79 from urine specimens [of which 39 were from patients with cystitis and 40 were from patients with pyelonephritis], and 97 from blood specimens) for phylogenetic group, sequence type complex (STc), and 49 putative extraintestinal pathogenic E. coli (ExPEC)–associated virulence genes. We then assessed these traits and ecological source as predictors of illness severity in a murine sepsis model. The study isolates exhibited a broad range of virulence in mice. Most of the studied bacterial characteristics corresponded significantly with experimental virulence, as did ecological source and established molecular definitions of ExPEC and uropathogenic E. coli (UPEC). Multivariable modeling identified the following bacterial traits as independent predictors of illness severity both overall and among the fecal and clinical (ie, urine and blood) isolates separately: fyuA (yersiniabactin receptor), kpsM K1 (K1 capsule), and kpsM II (group 2 capsules). Molecular UPEC status predicted virulence independently only among fecal isolates. Neither ecological source (ie, clinical vs fecal) nor molecular ExPEC status added predictive power to these traits, which accounted collectively for up to 49% of the observed variation in virulence. Among human-source E. coli isolates, specific accessory traits and phylogenetic/clonal backgrounds predict experimental virulence in a murine sepsis model better than does ecological source.