RGS14, a member of the regulator of G-protein signaling (RGS) protein family, possesses an N-terminal RGS domain, two Raf-like Ras-binding domains, and a GoLoco motif, which has GDP dissociation inhibitor activity. In this study we show that unique among the known mammalian RGS proteins, RGS14 localizes in centrosomes. Its first Ras-binding domain is sufficient to target RGS14 to centrosomes. RGS14 also shuttles between the cytoplasm and nucleus, and its nuclear export depends on the CRM-1 nuclear export receptor. Mutation of a nuclear export signal or treatment with leptomycin B causes nuclear accumulation of RGS14 and its association with promyelocytic leukemia protein nuclear bodies. Furthermore, a point mutant defective in nuclear export fails to target to centrosomes, suggesting that nuclear cytoplasmic shuttling is necessary for its proper localization. Mild heat stress, but not proteotoxic or transcription-linked stresses, re-localizes the RGS14 from the cytoplasm to promyelocytic leukemia nuclear bodies. Expression of RGS14, but not point mutants that disrupt the functional activity of its RGS domain or GoLoco motif, enhances the reporter gene activity. The multifunctional domains and the dynamic subcellular localization of RGS14 implicate it in a diverse set of cellular processes including centrosome and nuclear functions and stress-induced signaling pathways.
A great deal is known about this archetypal circadian system, and it is likely that Neurospora will represent the first circadian system in which it will be possible to provide a complete description of the flow of information from the photoreceptor, through the components of oscillator, out to a terminal aspect of regulation. In Neurospora the strongest case has been made for there being a state variable of clock identified (Hall, 1995), it has now been shown that light resetting of the clock is mediated by the rapid light induction of the gene encoding this state variable, and a number of defined clock-regulated output genes have been identified, in two of which the clock-specific parts of the promoters have been localized. In addition to the importance of these factoids themselves, our efforts towards understanding of this system has allowed the development of tools and paradigms (e.g. Loros et al., 1989; Loros and Dunlap, 1991; Aronson et al., 1994a) that will help to pave the way for proving the identity of clock components in more complex systems, for understanding how clocks are regulated by entraining factors, and for showing how time information eventually is used to regulate the behaviors of clock cells, and of whole organisms.
Neutrophils are first responders rapidly mobilized to inflammatory sites by a tightly regulated, nonredundant hierarchy of chemoattractants. These chemoattractants engage neutrophil cell surface receptors triggering heterotrimeric G-protein Gαi subunits to exchange GDP for GTP. By limiting the duration that Gαi subunits remain GTP bound, RGS proteins modulate chemoattractant receptor signaling. Here, we show that neutrophils with a genomic knock in of a mutation that disables regulator of G-protein signaling (RGS)-Gαi2 interactions accumulate in the bone marrow and mobilize poorly to inflammatory sites. These defects are attributable to enhanced sensitivity to background signals, prolonged chemoattractant receptor signaling, and inappropriate CXCR2 downregulation. Intravital imaging revealed a failure of the mutant neutrophils to accumulate at and stabilize sites of sterile inflammation. Furthermore, these mice could not control a nonlethal Staphylococcus aureus infection. Neutrophil RGS proteins establish a threshold for Gαi activation, helping to coordinate desensitization mechanisms. Their loss renders neutrophils functionally incompetent.
Population pharmacokinetic analysis and modeling procedures typically require estimates of both population and individual pharmacokinetic parameters. However, only some of these parameters are contained in models and only parameters in the model can be estimated. In this paper, we introduce a new R package, PKconverter, to calculate pharmacokinetic parameters using the relationships among them. After fitting the model, other parameters can be calculated from the functional relationship among the parameters. PKconverter provides the functions to calculate whole parameters along with a Shiny application for converting the parameters. With this package, it is also possible to calculate the standard errors of the other parameters that are not in the model and estimate individual parameters simultaneously.
The E3 ubiquitin-protein ligase Chfr is a mitotic stress checkpoint protein that delays mitotic entry in response to microtubule damage; however, the molecular mechanism by which Chfr accomplishes this remains elusive. Here, we show that Chfr levels are elevated in response to microtubule-damaging stress. Moreover, G(2)/M transition is associated with cell cycle-dependent turnover of Chfr accompanied by high autoubiquitylation activity, suggesting that regulation of Chfr levels and auto-ubiquitylation activity are functionally significant. To test this, we generated Chfr mutants Chfr-K2A and Chfr-K5A in which putative lysine target sites of auto-ubiquitylation were replaced with alanine. Chfr-K2A did not undergo cell cycle-dependent degradation, and its levels remained high during G(2)/M phase. The elevated levels of Chfr-K2A caused a significant reduction in phosphohistone H3 levels and cyclinB1/Cdk1 kinase activities, leading to mitotic entry delay. Notably, polo-like kinase 1 levels at G(2) phase, but not at S phase, were ∼2-3-fold lower in cells expressing Chfr-K2A than in wild-type Chfr-expressing cells. Consistent with this, ubiquitylation of Plk1 at G(2) phase was accelerated in Chfr-K2A-expressing cells. In contrast, Aurora A levels remained constant, indicating that Plk1 is a major target of Chfr in controlling the timing of mitotic entry. Indeed, overexpression of Plk1 in Chfr-K2A-expressing cells restored cyclin B1/Cdk1 kinase activity and promoted mitotic entry. Collectively, these data indicate that Chfr auto-ubiquitylation is required to allow Plk1 to accumulate to levels necessary for activation of cyclin B1/Cdk1 kinase and mitotic entry. Our results provide the first evidence that Chfr auto-ubiquitylation and degradation are important for the G(2)/M transition.
Normal cardiovascular development and physiology depend in part upon signalling through G-protein-coupled receptors (GPCRs), such as the angiotensin II type 1 (AT(1)) receptor, sphingosine 1-phosphate (S1P) receptors and endothelin-1 (ET-1) receptor. Since regulator of G-protein signalling (RGS) proteins function as GTPase-activating proteins for the G alpha subunit of heterotrimeric G-proteins, these proteins undoubtedly have functional roles in the cardiovascular system. In the present paper, we show that human aorta and heart differentially express RGS1, RGS2, RGS3S (short-form), RGS3L (long-form), PDZ-RGS3 (PDZ domain-containing) and RGS4. The aorta prominently expresses mRNAs for all these RGS proteins except PDZ-RGS3. Various stimuli that are critical for both cardiovascular development and function regulate dynamically the mRNA levels of several of these RGS proteins in primary human aortic smooth muscle cells. Both RGS1 and RGS3 inhibit signalling through the S1P(1) (formerly known as EDG-1), S1P(2) (formerly known as EDG-5) and S1P(3) (formerly known as EDG-3) receptors, whereas RGS2 and RGS4 selectively attenuate S1P(2)-and S1P(3)-receptor signalling respectively. All of the tested RGS proteins inhibit AT(1)-receptor signalling, whereas only RGS3 and, to a lesser extent, RGS4 inhibit ET(A)-receptor signalling. The conspicuous expression of RGS proteins in the cardiovascular system and their selective effects on relevant GPCR-signalling pathways provide additional evidence that they have functional roles in cardiovascular development and physiology.
Abstract Mitochondria serve as platforms for innate immunity. The mitochondrial antiviral signalling (MAVS) protein forms aggregates that elicit robust type-I interferon induction on viral infection, but persistent MAVS signalling leads to host immunopathology; it remains unknown how these signalling aggregates are resolved. Here we identify the mitochondria-resident E3 ligase, MARCH5, as a negative regulator of MAVS aggregates. March5 +/− mice and MARCH5-deficient immune cells exhibit low viral replication and elevated type-I interferon responses to RNA viruses. MARCH5 binds MAVS only during viral stimulation when MAVS forms aggregates, and these interactions require the RING domain of MARCH5 and the CARD domain of MAVS. MARCH5, but not its RING mutant (MARCH5 H43W ), reduces the level of MAVS aggregates. MARCH5 transfers ubiquitin to Lys7 and Lys500 of MAVS and promotes its proteasome-mediated degradation. Our results indicate that MARCH5 modulates MAVS-mediated antiviral signalling, preventing excessive immune reactions.