Increasing studies show that gut microbiota play a central role in immunity, although the impact of the microbiota on mediation of thymic T cells throughout life is not well understood. Chickens have been shown to be a valuable model for studying basic immunology. Here, we show that changes in the gut microbiota are associated with the development of thymic T cells in young chickens. Our results showed that T-cell numbers in newborn chicks sharply increased from day 0 and peaked at day 49. Interestingly, the α-diversity score pattern of change in gut microbiota also increased after day 0 and continued to increase until day 49. We found that early antibiotic treatment resulted in a dramatic reduction in gut alpha diversity: principal component analysis (PCA) showed that antibiotic treatment resulted in a different cluster from the controls on days 9 and 49. In the antibiotic-treated chickens, we identified eight significantly different ( p < 0.05) microbes at the phylum level and 14 significantly different ( p < 0.05) microbes at the genus level, compared with the controls. Importantly, we found that antibiotic treatment led to a decreased percentage and number of T cells in the thymus when measured at days 9 and 49, as evaluated by flow cytometry. Collectively, our data suggest that intestinal microbiota may be involved in the regulation of T cells in birds, presenting the possibility that interventions that actively modify the gut microbiota in early life may accelerate the maturation of humoral immunity, with resulting anti-inflammatory effects against different pathogens.
OBJECTIVE To study the toxicity and its mechanisms of 1-methyl-4-phenylpyridinium ion (MPP+) on pheochromocytoma PC12 cells. METHODS PC12 cells were cultured in vitro, and poisoned by 100, 300, 500 micromol/L MPP+. Western blot was performed to determine the level of phosphorylated c-Jun-N-terminal kinase/stress activated protein kinases (JNK/SAPK). The cells were pretreated with SP600125, an inhibitor of JNK pathway, and then the number of apoptotic cells were counted by using TUNEL stain, observing its influence on cell apoptosis seduced by MPP+. RESULTS MPP+ poisoning can cause the increase of phosphorylation level of JNK1/2 cells. The usage of JNK pathway inhibitor SP600125 can inhibit the PC12 cell apoptosis seduced by MPP+. CONCLUSION Activation of JNK pathway may be the important molecular mechanism of PC12 cell apoptosis seduced by MPP+ and of producing dopaminergic neurotoxicity.
Xylanases play a crucial role in the degradation of xylan in both terrestrial and marine environments. The endoxylanase XynB from the marine bacterium Glaciecola mesophila KMM 241 is a modular enzyme comprising a long N-terminal domain (NTD) (E44 to T562) with xylan-binding ability and a catalytic domain (CD) (T563 to E912) of glycoside hydrolase family 8 (GH8). In this study, the long NTD is confirmed to contain three different functional regions, which are NTD1 (E44 to D136), NTD2 (Y137 to A193), and NTD3 (L194 to T562). NTD1, mainly composed of eight β-strands, functions as a new type of carbohydrate-binding module (CBM), which has xylan-binding ability but no sequence similarity to any known CBM. NTD2, mainly forming two α-helices, contains one of the α-helices of the catalytic domain's (α/α)6 barrel and therefore is essential for the activity of XynB, although it is far away from the catalytic domain in sequence. NTD3, next to the catalytic domain in sequence, is shown to be helpful in maintaining the thermostability of XynB. Thus, XynB represents a kind of xylanase with a new domain architecture. There are four other predicted glycoside hydrolase sequences with the same domain architecture and high sequence identity (≥80%) with XynB, all of which are from marine bacteria. Phylogenetic analysis shows that XynB and these homologs form a new group in GH8, representing a new class of marine bacterial xylanases. Our results shed light on xylanases, especially marine xylanases.IMPORTANCE Xylanases play a crucial role in natural xylan degradation and have been extensively used in industries such as food processing, animal feed, and kraft pulp biobleaching. Some marine bacteria have been found to secrete xylanases. Characterization of novel xylanases from marine bacteria has significance for both the clarification of xylan degradation mechanisms in the sea and the development of new enzymes for industrial application. With G. mesophila XynB as a representative, this study reveals a new group of the GH8 xylanases from marine bacteria, which have a distinct domain architecture and contain a novel carbohydrate-binding module. Thus, this study offers new knowledge on marine xylanases.
Xylans are polysaccharides composed of xylose and include β1,4-xylan, β1,3-xylan, and β1,3/1,4-mixed-linkage xylan (MLX). MLX is widely present in marine red algae and constitutes a significant organic carbon in the ocean. Xylanases are hydrolase enzymes that play an important role in xylan degradation. While a variety of β1,4-xylanases and β1,3-xylanases involved in the degradation of β1,4-xylan and β1,3-xylan have been reported, no specific enzyme has yet been identified that degrades MLX. Herein, we report the characterization of a new MLX-specific xylanase from the marine bacterium Polaribacter sp. Q13 which utilizes MLX for growth. The bacterium secretes xylanases to degrade MLX, among which is Xyn26A, an MLX-specific xylanase that shows low sequence similarities (<27%) to β1,3-xylanases in the glycoside hydrolase family 26 (GH26). We show that Xyn26A attacks MLX precisely at β1,4-linkages, following a β1,3-linkage toward the reducing end. We confirm that Xyn26A and its homologs have the same specificity and mode of action on MLX, and thus represent a new xylanase group which we term as MLXases. We further solved the structure of a representative MLXase, AlXyn26A. Structural and biochemical analyses revealed that the specificity of MLXases depends critically on a precisely positioned β1,3-linkage at the -2/-1 subsite. Compared to the GH26 β1,3-xylanases, we found MLXases have evolved a tunnel-shaped cavity that is fine-tuned to specifically recognize and hydrolyze MLX. Overall, this study offers a foremost insight into MLXases, shedding light on the biochemical mechanism of bacterial degradation of MLX.
Abstract Primary cultured cardiomyocytes show spontaneous Ca 2+ oscillations (SCOs) which not only govern contractile events, but undergo derangements that promote arrhythmogenesis through Ca 2+ -dependent mechanism. We systematically examined influence on SCOs of an array of ion channel modifiers by recording intracellular Ca 2+ dynamics in rat ventricular cardiomyocytes using Ca 2+ specific fluorescence dye, Fluo-8/AM. Voltage-gated sodium channels (VGSCs) activation elongates SCO duration and reduces SCO frequency while inhibition of VGSCs decreases SCO frequency without affecting amplitude and duration. Inhibition of voltage-gated potassium channel increases SCO duration. Direct activation of L-type Ca 2+ channels (LTCCs) induces SCO bursts while suppressing LTCCs decreases SCO amplitude and slightly increases SCO frequency. Activation of ryanodine receptors (RyRs) increases SCO duration and decreases both SCO amplitude and frequency while inhibiting RyRs decreases SCO frequency without affecting amplitude and duration. The potencies of these ion channel modifiers on SCO responses are generally consistent with their affinities in respective targets demonstrating that modification of distinct targets produces different SCO profiles. We further demonstrate that clinically-used drugs that produce Long-QT syndrome including cisapride, dofetilide, sotalol, and quinidine all induce SCO bursts while verapamil has no effect. Therefore, occurrence of SCO bursts may have a translational value to predict cardiotoxicants causing Long-QT syndrome.