Abstract Flame spray synthesis has opened the possibility to add additional elements to complex materials such as bioactive glasseswhile maintaining nanoparticulate properties. In this study, it was investigated whether a flamesprayed bismuth oxide doped nanometric 45S5 bioactive glass could be incorporated into a commercially available epoxy-resin root canal sealer, and how this compared to a conventional, pure 45S5 micrometric bioactive glass. Effects on radiopacity, microhardness, pH and mineral induction in phosphate buffered saline and simulated body fluid were studied. It was revealed that the radiopaque nanometric bismuth-containing 45S5 bioactive glass reduced radiopacity of the root canal sealer less than a conventional micrometric counterpart. In addition, pH induction and calcium phosphate precipitation were quicker with the nanometric compared to the micrometric material, whilst the micrometric glass displayed a higher alkaline capacity. Both materials apparently bound to the epoxy resin matrix, thus increasing its microhardness after polymerization reaction. Effects were dose-dependent. The investigated radiopaque bioactive glass containing bismuth oxide could be a valuable add-on for current root canal sealers.
Abstract The concept of adding inorganic fillers into hydrogels to form hydrogel nanocomposites often provides advantageous properties which can be exploited for successful 3D biofabrication. In this study, a new composite hydrogel combining oxidized alginate–gelatin (ADA‐GEL) hydrogel and Laponite® nanoclay as inorganic nanofiller was successfully developed and characterized. The results showed that the addition of 0.5% (wt/vol) Laponite® nanoplatelets improved the printability of ADA‐GEL hydrogels enabling the fabrication of detailed structures since a low effect of material spreading and reduced tendency to pore closure appeared. Furthermore, a comparison of different needle types (cylindrical and conical; same inner diameter of 250 μm) in filament fusion test showed that the pattern dispensed by cylindrical tip has enhanced printing accuracy and pattern fidelity when compared with the pattern from conical tip. A glass flip test determined a processing window of 1–2 h after composite ink preparation. Overall, Laponite® /ADA‐GEL hydrogel composites are confirmed as promising inks for 3D bioprinting.
Bioprinting has seen significant progress in recent years for the fabrication of bionic tissues with high complexity. However, it remains challenging to develop cell-laden bioinks exhibiting superior physiochemical properties and bio-functionality. In this study, a multifunctional nanocomposite bioink is developed based on amine-functionalized copper (Cu)-doped mesoporous bioactive glass nanoparticles (ACuMBGNs) and a hydrogel formulation relying on dynamic covalent chemistry composed of alginate dialdehyde (oxidized alginate) and gelatin, with favorable rheological properties, improved shape fidelity, and structural stability for extrusion-based bioprinting. The reversible dynamic microenvironment in combination with the impact of cell-adhesive ligands introduced by aminated particles enables the rapid spreading (within 3 days) and high survival (>90%) of embedded human osteosarcoma cells and immortalized mouse bone marrow-derived stroma cells. Osteogenic differentiation of primary mouse bone marrow stromal stem cells (BMSCs) and angiogenesis are promoted in the bioprinted alginate dialdehyde-gelatin (ADA-GEL or AG)-ACuMBGN scaffolds without additional growth factors in vitro, which is likely due to ion stimulation from the incorporated nanoparticles and possibly due to cell mechanosensing in the dynamic matrix. In conclusion, it is envisioned that these nanocomposite bioinks can serve as promising platforms for bioprinting complex 3D matrix environments providing superior physiochemical and biological performance for bone tissue engineering.
Hydrogels that allow for the successful long-term in vitro culture of cell-biomaterial systems to enable the maturation of tissue engineering constructs are highly relevant in regenerative medicine. Naturally derived polysaccharide-based hydrogels promise to be one material group with enough versatility and chemical functionalization capability to tackle the challenges associated with long-term cell culture. We report a marine derived oxidized alginate, alginate dialdehyde (ADA), and gelatin (GEL) system (ADA-GEL), which is cross-linked via ionic (Ca2+) and enzymatic (microbial transglutaminase, mTG) interaction to form dually cross-linked hydrogels. The cross-linking approach allowed us to tailor the stiffness of the hydrogels in a wide range (from <5 to 120 kPa), without altering the initial ADA and GEL hydrogel chemistry. It was possible to control the degradation behavior of the hydrogels to be stable for up to 30 days of incubation. Increasing concentrations of mTG cross-linker solutions allowed us to tune the degradation behavior of the ADA-GEL hydrogels from fast (<7 days) to moderate (14 days) and slow (>30 days) degradation kinetics. The cytocompatibility of mTG cross-linked ADA-GEL was assessed using NIH-3T3 fibroblasts and ATDC-5 mouse teratocarcinoma cells. Both cell types showed highly increased cellular attachment on mTG cross-linked ADA-GEL in comparison to Ca2+ cross-linked hydrogels. In addition, ATDC-5 cells showed a higher proliferation on mTG cross-linked ADA-GEL hydrogels in comparison to tissue culture polystyrene control substrates. Further, the attachment of human umbilical vein endothelial cells (HUVEC) on ADA-GEL (+) mTG was confirmed, proving the suitability of mTG+Ca2+ cross-linked ADA-GEL for several cell types. Summarizing, a promising platform to control the properties of ADA-GEL hydrogels is presented, with the potential to be applied in long-term cell culture investigations such as cartilage, bone, and blood-vessel engineering, as well as for biofabrication.
3D printing is a rapidly evolving field for biological (bioprinting) and non-biological applications. Due to a high degree of freedom for geometrical parameters in 3D printing, prototype printing of bioreactors is a promising approach in the field of Tissue Engineering. The variety of printers, materials, printing parameters and device settings is difficult to overview both for beginners as well as for most professionals. In order to address this problem, we designed a guidance including test bodies to elucidate the real printing performance for a given printer system. Therefore, performance parameters such as accuracy or mechanical stability of the test bodies are systematically analysed. Moreover, post processing steps such as sterilisation or cleaning are considered in the test procedure. The guidance presented here is also applicable to optimise the printer settings for a given printer device. As proof of concept, we compared fused filament fabrication, stereolithography and selective laser sintering as the three most used printing methods. We determined fused filament fabrication printing as the most economical solution, while stereolithography is most accurate and features the highest surface quality. Finally, we tested the applicability of our guidance by identifying a printer solution to manufacture a complex bioreactor for a perfused tissue construct. Due to its design, the manufacture via subtractive mechanical methods would be 21-fold more expensive than additive manufacturing and therefore, would result in three times the number of parts to be assembled subsequently. Using this bioreactor we showed a successful 14-day-culture of a biofabricated collagen-based tissue construct containing human dermal fibroblasts as the stromal part and a perfusable central channel with human microvascular endothelial cells. Our study indicates how the full potential of biofabrication can be exploited, as most printed tissues exhibit individual shapes and require storage under physiological conditions, after the bioprinting process.
The aim of this study was to develop bioinks closely resembling the nanostructure of bone incorporating amorphous calcium phosphate (ACP) as inorganic counterpart; specifically citrate stabilized ACP (ACP_CIT) and non-stabilized ACP (ACP_ACE), in alginate dialdehyde-gelatin (ADA-GEL). Oscillatory shear tests were performed to understand the viscoelastic behavior of the hydrogels. G' and G" of ADA-GEL were 78 ± 8 Pa and 3.4 ± 0.4 Pa, respectively. By addition of ACP_ACE, G' and G" increased to 117 ± 15 Pa and 6.2 ± 0.4 Pa, while incorporation of ACP_CIT led to G' and G" values of 127 ± 14 Pa and 8 ± 1 Pa, respectively. The viscoelastic properties of ADA-GEL were enhanced by the reinforcement with ACP. ACP_CIT was more effective than ACP_ACE. Bioinks were formulated by embedding MC3T3-E1 cells in the hydrogels, followed by fabrication of constructs at 65 kPa and speed of 5 mm/s. Crosslinking was performed by immersing in CaCl2 and microbial transglutaminase solution. Post-printing analysis was performed using printability index and average pore area analysis. The lowest structural stability was observed in ADA-GEL constructs and the highest was noted in ADA-GEL-ACP_CIT. Epifluorescence and two-photon microscopy of Rhodamine/Phalloidin stained constructs confirmed the cytocompatibility of the bioinks.
Part B: Applied Biomaterials is a highly interdisciplinary peerreviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices.It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used.Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano-and biomimetic-biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products.
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted great attention in many biomedical fields and are used in preclinical/experimental drug delivery, hyperthermia and medical imaging. In this study, biocompatible magnetite drug carriers, stabilized by a dextran shell, were developed to carry tissue plasminogen activator (tPA) for targeted thrombolysis under an external magnetic field. Different concentrations of active tPA were immobilized on carboxylated nanoparticles through carbodiimide-mediated amide bond formation. Evidence for successful functionalization of SPIONs with carboxyl groups was shown by Fourier transform infrared spectroscopy. Surface properties after tPA immobilization were altered as demonstrated by dynamic light scattering and ζ potential measurements. The enzyme activity of SPION-bound tPA was determined by digestion of fibrin-containing agarose gels and corresponded to about 74% of free tPA activity. Particles were stored for three weeks before a slight decrease in activity was observed. tPA-loaded SPIONs were navigated into thrombus-mimicking gels by external magnets, proving effective drug targeting without losing the protein. Furthermore, all synthesized types of nanoparticles were well tolerated in cell culture experiments with human umbilical vein endothelial cells, indicating their potential utility for future therapeutic applications in thromboembolic diseases.
Alginate-based hydrogels are a promising class of biomaterials due to their usability, biocompatibility, and high water-binding capacity which is the reason for their broad use in biofabrication. One challenge of these biomaterials is, however, the lack of cell adhesion motifs. This drawback can be overcome by oxidizing alginate to alginate dialdehyde (ADA) and by subsequent cross-linking with gelatin (GEL) to fabricate ADA–GEL hydrogels, which offer improved cell–material interactions. The present work investigates four pharmaceutical grade alginates of different algae sources and their respective oxidized forms regarding their molecular weight and M/G ratio using 1H NMR spectroscopy and gel permeation chromatography. In addition, three different methods for determining the degree of oxidation (% DO) of ADA, including iodometric, spectroscopic, and titration methods, are applied and compared. Furthermore, the aforementioned properties are correlated with the resulting viscosity, degradation behavior, and cell–material interactions to predict the material behavior in vitro and thus choose a suitable alginate for an intended application in biofabrication. In the framework of the present work, easy and practicable detection methods for the investigations of alginate-based bioinks were summarized and shown. In this regard, the success of oxidation of alginate was confirmed by the three aforementioned methods and was further proven by solid-state 13C NMR, for the first time in the literature, that only guluronic acid (G) was attacked during the oxidation, leading to the formation of hemiacetals. Furthermore, it was shown that ADA–GEL hydrogels of alginates with longer G-blocks are more suitable for long-term experiments due to their stability over an incubation period of 21 days, while ADA–GEL hydrogels of alginates with longer mannuronic acid (M)-blocks are more suitable for short-term applications such as sacrificial inks due to their extensive swelling and subsequent loss of shape. Finally, it was proven that the M/G ratio did not show any influence on the biocompatibility or printability of the investigated alginate-based hydrogels. The physicochemical findings provide an alginate library for tailored application in biofabrication.