<div>AbstractPurpose:<p>CD70 is a costimulatory molecule known to activate CD27-expressing T cells. CD27–CD70 interaction leads to the release of soluble CD27 (sCD27). Clear-cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors; however, the clinical consequences of CD70 expression remain unclear.</p>Experimental Design:<p>Tumor tissue from 25 patients with ccRCC was assessed for the expression of CD27 and CD70 <i>in situ</i> using multiplex immunofluorescence. CD27<sup>+</sup> T-cell phenotypes in tumors were analyzed by flow cytometry and their gene expression profile were analyzed by single-cell RNA sequencing then confirmed with public data. Baseline sCD27 was measured in 81 patients with renal cell carcinoma (RCC) treated with immunotherapy (35 for training cohort and 46 for validation cohort).</p>Results:<p>In the tumor microenvironment, CD27<sup>+</sup> T cells interacted with CD70-expressing tumor cells. Compared with CD27<sup>−</sup> T cells, CD27<sup>+</sup> T cells exhibited an apoptotic and dysfunctional signature. In patients with RCC, the intratumoral CD27–CD70 interaction was significantly correlated with the plasma sCD27 concentration. High sCD27 levels predicted poor overall survival in patients with RCC treated with anti–programmed cell death protein 1 in both the training and validation cohorts but not in patients treated with antiangiogenic therapy.</p>Conclusions:<p>In conclusion, we demonstrated that sCD27, a surrogate marker of T-cell dysfunction, is a predictive biomarker of resistance to immunotherapy in RCC. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be extended to other tumors.</p></div>
CD70, a costimulatory molecule on antigen presenting cells, is known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). However, persistent interaction of CD27 and CD70 such as in chronic infection may exhaust the T cell pool and promote apoptosis. Surprisingly, our analysis based on TCGA database show that clear cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors. Despite the important clinical efficacy of immunotherapy by anti-PD-1 in RCC patients, the overall response to anti-PD1 remains modest. The relationship between the CD27-CD70 interaction in the RCC and the response to immunotherapy is still unclear.
Materials and Methods
To study the CD27 and CD70 expression in the tumor microenvironment (TME), FFPE tumor tissues from 25 RCC patients were analysed using multiplex in situ immunofluorescence. 10 fresh RCC tumor samples were collected to analyse the phenotype of CD27+ T cells by flow cytometry and 4 samples were proceeded for single-cell RNA-seq analysis. A cohort of metastatic RCC patients (n = 35) treated by anti-PD-1 were enrolled for the measurement of plasma sCD27 by ELISA and the survival analysis is also realized.
Results
In the TME, we demonstrated that CD27+ T cells interact with CD70-expressing tumor cells. In fresh tumors from RCC patients, CD27+ T cells express higher levels of cleaved caspase 3 (a classical marker of apoptosis) than CD27- T cells. We confirmed the apoptotic signature (BAX, FASLG, BCL2L11, CYCS, FBXO32, LGALS1, PIK3R1, TERF1, TXNIP, CDKN2A) of CD27+ T cells by single-cell RNAseq analysis. CD27+T cells also had a tissue resident memory T cell phenotype with enriched gene expression of ITGAE, PRDM1, RBPJ and ZNF683. Moreover, CD27+T cells display an exhaustion phenotype with the expression of multiple inhibitory receptors gene signature (PDCD1, CTLA4, HAVCR2, LAG3, etc). Besides, intratumoral CD27-CD70 interaction significantly correlates with plasma sCD27 concentration in RCC (p = 0.0017). In metastatic RCC patients treated with anti-PD-1, higher levels of sCD27 predict poor overall survival (p = 0.037), while it did not correlate with inflammatory markers or clinical prognostic criteria.
Conclusions
In conclusion, we demonstrated that sCD27, a surrogate of T cell dysfunction in tumors likely induced by persistent interactions of CD27+T cells and CD70-expressing tumor cells, is a predictive biomarker of resistance to immunotherapy in mRCC. To our knowledge, this is the first report showing that a peripheral blood biomarker may reflect certain aspects of the tumor-host interaction in the tumor microenvironment. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be further extended to other types of tumors. CD70-CD27 interaction could thus be considered as a mechanism of tumor escape, but also a novel therapeutic target in cancers.
Disclosure Information
N. Benhamouda: None. I. Sam: None. N. Epaillard: None. A. Gey: None. A. Saldmann: None. J. Pineau: None. M. Hasan: None. V. Verkarre: None. V. Libri: None. S. Mella: None. C. Granier: None. C. Broudin: None. P. Ravel: None. B. Jabla: None. N. Chaput: None. L. Albiges: None. Y. Vano: None. O. Adotevi: None. S. Oudard: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; SIRIC CARPEM, FONCER. E. Tartour: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; Fondation ARC, INCA PLBio, Labex Immuno-Oncology, SIRIC CARPEM, FONCER, IDEX université de Paris, Inserm Transfert.
NK cells have the imperative role in the early control of cytomegalovirus (CMV) infection. The infection of mice with mouse CMV (MCMV) is used as a model for studying the role of NK cells during CMV infection. An evolutionary struggle between NK cells and CMV can be inferred from the existence of a broad range of viral mechanisms designed to compromise NK cell function. NK cell response is regulated by the balance of signaling by inhibitory and activating receptors specific for cell surface ligands. NKG2D is an activating receptor on NK cells that has been implicated in the recognition of cells infected with viruses. In mice, RAE-1 family of proteins, H60 and MULT-1 were identified as ligands for NKG2D receptor. These ligands are poorly expressed on the surface of most normal cells but are transcriptionally upregulated in infected cells. We have recently identified three MCMV proteins that selectively target NKG2D ligands. The product of m145 gene acts as a selective inhibitor of MULT-1 whereas the m152-encoded glycoprotein was demonstrated to block the surface expression of RAE-1-family members. The NKG2D ligand H60 is down-regulated by the product of m155 gene. We have recently discovered another viral immunoevasin that prevents NK cell activation via NKG2D. MCMV fcr-1/m138 protein that specifically binds to the Fc part of IgG is also able to down-regulate NKG2D ligands MULT-1 and H60. The importance of these viral proteins in the evasion of NK cells was confirmed also in vivo. We are currently attempting to identify mechanisms by which these viral proteins regulate the expression of NKG2D ligands. Altogether, the identification of viral immunoevasins and the mechanisms of their interference with immune receptors and their ligands are likely to contribute to better understanding of the pathogenesis of CMV infections.
Globally one out of four children under 5 years is affected by linear growth delay (stunting). This syndrome has severe long-term sequelae including increased risk of illness and mortality and delayed psychomotor development. Stunting is a syndrome that is linked to poor nutrition and repeated infections. To date, the treatment of stunted children is challenging as the underlying etiology and pathophysiological mechanisms remain elusive. We hypothesize that pediatric environmental enteropathy (PEE), a chronic inflammation of the small intestine, plays a major role in the pathophysiology of stunting, failure of nutritional interventions and diminished response to oral vaccines, potentially via changes in the composition of the pro- and eukaryotic intestinal communities. The main objective of AFRIBIOTA is to describe the intestinal dysbiosis observed in the context of stunting and to link it to PEE. Secondary objectives include the identification of the broader socio-economic environment and biological and environmental risk factors for stunting and PEE as well as the testing of a set of easy-to-use candidate biomarkers for PEE. We also assess host outcomes including mucosal and systemic immunity and psychomotor development. This article describes the rationale and study protocol of the AFRIBIOTA project. AFRIBIOTA is a case-control study for stunting recruiting children in Bangui, Central African Republic and in Antananarivo, Madagascar. In each country, 460 children aged 2–5 years with no overt signs of gastrointestinal disease are recruited (260 with no growth delay, 100 moderately stunted and 100 severely stunted). We compare the intestinal microbiota composition (gastric and small intestinal aspirates; feces), the mucosal and systemic immune status and the psychomotor development of children with stunting and/or PEE compared to non-stunted controls. We also perform anthropological and epidemiological investigations of the children's broader living conditions and assess risk factors using a standardized questionnaire. To date, the pathophysiology and risk factors of stunting and PEE have been insufficiently investigated. AFRIBIOTA will add new insights into the pathophysiology underlying stunting and PEE and in doing so will enable implementation of new biomarkers and design of evidence-based treatment strategies for these two syndromes.
Abstract The need to understand the mechanisms and pathways of immune responses in pathogenic conditions such as cancer and autoimmunity requires awareness of natural immune variability in healthy subjects. To this end, various systems immunology studies have been established. Among them, the Milieu Intérieur (MI) study was established to define the boundaries of a healthy immune response and identify determinants of immune response variation. MI used immunophenotyping of a 1000 healthy donor cohort by flow cytometry as a principal outcome for immune variance at steady state. For the 10-year longitudinal MI study, we have developed two high-dimensional spectral flow cytometry panels that allow deep characterization of innate and adaptive whole blood immune cells (35 and 34 fluorescent markers, respectively) and standardized the protocol for sample handling, staining, acquisition, and data analysis. This permits the reproducible quantification of over 182 immune cell phenotypes through robust immunophenotyping at a single site. This highly standardized protocol was applied to samples from patients with autoimmune/inflammatory diseases. It is currently used for characterization of the impact of age and environmental factors on peripheral blood immune phenotypes of >400 donors from the initial MI cohort.