The present study was to evaluate the potential effectiveness of low-molecular-weight chitosan-coated baicalin methoxy poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (BA LCH NPs) for the treatment of cataract. mPEG-PLGA NPs were optimized by the Box–Behnken design and the central composite design based on the encapsulation efficiency and drug loading. Then, the BA LCH NPs were characterized based on morphology, particle size, and zeta potentials. The analytical data of differential scanning calorimetry, X-ray diffraction, and transmission electron microscopy depicted the drug excipient compatibility. In vitro, we evaluated cell viability, cellular uptake, potential ocular irritation, transcorneal permeability, and the precorneal retention of BA LCH NPs. In vivo, the chronic selenium cataract model was selected to assess the therapeutic effect of BA LCH NPs. The size of BA LCH NPs was within the range from 148 to 219 nm and the zeta potential was 19–25 mV. Cellular uptake results showed that the fluorescence intensity of the preparations in each group increased with time, and the fluorescence intensity of the LCH NP group was significantly higher than that of the solution group. The optimized BA LCH NPs improved precorneal residence time without causing eye irritation and also showed a sustained release of BA through the cornea for effective management of cataract. Also, fluorescence tracking on the rabbit cornea showed increased corneal retention of the LCH NPs. In addition, the results of therapeutic efficacy demonstrated that BA LCH NPs can significantly reduce the content of malondialdehyde and enhanced the activities of catalase, superoxide dismutase, and glutathione peroxidase, which was comparable to positive control and better than the BA solution group. Thus, it can be inferred that the BA LCH NPs are a promising drug delivery system for enhancing the ophthalmic administration of BA to the posterior segment of the eye and improving cataract symptoms.
Liver cancer, otherwise known as hepatocellular carcinoma, is a chronic disease condition with an excessive deposition and growth of malignant cells in the body. The high incidence and prevalence rates of liver cancer continue to be problems, as well as its poor prognosis and therapeutic limitations involving severe drug adverse reactions linked to the use of synthetic chemotherapeutic compounds. Continuous experimental studies, as well as utilization of pure herbal-based compounds, are essential towards finding more potent cures for liver cancer. Natural bioactive compounds, particularly alkaloids (eg, berberine), have been shown to be highly beneficial in the treatment of various diseases. Berberine (BBR), an isoquinoline alkaloid, is obtained from stem, bark, roots, rhizomes, and leaves of several medicinal plants, including Berberis species. It is commonly synthesized from the benzyltetrahydroisoquinoline system with the incorporation of an additional carbon atom as a bridge. The multiple attributes of BBR involving effective inhibitory and cytotoxic actions against the proliferation of cancer cells have been demonstrated. The use of BBR in experimental studies (in vivo and in vitro) for over a decade for liver cancer treatment has proven to be highly effective, safe, and potent. Until now, the poor solubility of BBR remains one of the contributing factors leading to its minimal clinical bioavailability. Therefore, BBR could serve as a prospective drug candidate in the future towards drug formulation for liver cancer treatment. The relevant information regarding this review was obtained electronically through the use of databases such as PubMed, Google Scholar, Springer, Hindawi, Embase, Web of Science, and China National Knowledge Infrastructure. All the aforementioned databases were searched from 1981 to 2020. This literature represents an update of previous review papers discussing the various positive pharmacological and mechanistic effects (oxidative stress regulation, inflammation reduction, apoptosis activation, overcoming drug resistance, and metastasis inhibition) of BBR for liver cancer treatment, which would be of great significance to drug development and clinical research.
Idiopathic pulmonary fibrosis (IPF), a tumor-like disease, is a serious and fatal pulmonary inflammatory condition usually characterized by irreversible destruction of the lung parenchyma, excessive matrix accumulation, and decline in lung function. IPF still remains a great burden to the universe. At the moment, the available therapeutic regimens utilized for IPF such as non-pharmacological therapies (lung transplantation) and pharmacological therapies (drugs, nintedanib, pirfenidone, etc.) are normally accompanied by significant limitations, such as adverse reactions, low bioavailability, poor selectivity, low-tissue distribution, in vivo instability, systemic toxicity, inconveniency and unsafe usage. There is a need for the exploration and discovery of new novel remedies by researchers and scientists globally. Recent numerous preliminary studies have laid significant emphasis and demonstrated the antifibrotic importance, good curative actions (little or no adverse reactions), and multiple target sites of the active components from traditional herbal medicine (THM) against IPF, which could serve as a modern, alternative and potential therapeutics or drug candidates in treating IPF. This paper extensively summarizes the pharmacological actions and signaling pathways or mechanisms of active components obtained from THM for treating IPF. Moreover, the sources and modernization, markets, relevant FDA and CFDA studies (the USA and China), preclinical analysis, and various compositions of THM currently under clinical trials are also highlighted. Additionally, this present analytical data would be instrumental towards further drug progression or advancement of active components from THM for the potential therapeutics of IPF in the future.
Fibrosis and cancer is described by some epidemiological studies as chronic stages of different disease conditions typically characterized by uncontrolled accumulation of extra-cellular matrix (ECM), thereby leading to inflammation of tissues and organ (lungs, heart, liver and kidney) dysfunction. It is highly prevalent, and contributes to increased mortality rate worldwide. Currently, the therapeutical approaches involving selected medications (bemcentinib, pirfenidone and nintedanib) obtained synthetically, and used in clinical practices for fibrosis and cancer management and treatment has shown to be unsatisfactorily, especially during progressive stages of the disease. With regards to finding a more potent, effective, and promising curative for fibrosis and cancer, there is need for continuous experimental studies universally. However, phytochemical constituents' particularly phenolic compounds [Chlorogenic acid (CGA)] obtained from coffee, and coffee beans have been predominantly utilized in experimental studies, due to its multiple pharmacological properties against various disease forms. Considering its natural source alongside minimal toxicity level, CGA, a major precursor of coffee have gained considerable attention nowadays from researchers worldwide, owing to its wide, efficacious and beneficial action against fibrosis and cancer. Interestingly, the safety of CGA has been proven. Furthermore, numerous experimental studies have also deduced massive remarkable outcomes in the use of CGA clinically, as a potential drug candidate against treatment of fibrosis and cancer. In the course of this review article, we systematically discussed the beneficial contributions of CGA with regards to its source, absorption, metabolism, mechanistic effects, and molecular mechanisms against different fibrosis and cancer categorization, which might be a prospective remedy in the future. Moreover, we also highlighted CGA (in vitro and in vivo analytical studies) defensive effects against various disorders.