Abstract Pain experience can change the central processing of nociceptive inputs, resulting in persistent allodynia and hyperalgesia. However, the underlying circuit mechanisms remain underexplored. Here, we focus on pain-induced remodeling of the projection from the mediodorsal thalamus (MD) to the anterior cingulate cortex (ACC), a projection that relays spinal nociceptive input for central processing. Using optogenetics combined with slice electrophysiology, we detected in male mice that 7 days of chronic constriction injury (CCI; achieved by loose ligation of the sciatic nerve) generated AMPA receptor (AMPAR)-silent glutamatergic synapses within the contralateral MD-to-ACC projection. AMPAR-silent synapses are typically GluN2B-enriched nascent glutamatergic synapses that mediate the initial formation of neural circuits during early development. During development, some silent synapses mature and become “unsilenced” by recruiting and stabilizing AMPARs, consolidating and strengthening the newly formed circuits. Consistent with these synaptogenic features, pain-induced generation of silent synapses was accompanied by increased densities of immature dendritic spines in ACC neurons and increased synaptic weight of GluN2B-containing NMDA receptors (NMDARs) in the MD-to-ACC projection. After prolonged (∼30 days) CCI, injury-generated silent synapses declined to low levels, which likely resulted from a synaptic maturation process that strengthens AMPAR-mediated MD-to-ACC transmission. Consistent with this hypothesis, viral-mediated knockdown of GluN2B in ACC neurons, which prevented pain-induced generation of silent synapses and silent synapse-mediated strengthening of MD-to-ACC projection after prolonged CCI, prevented the development of allodynia. Taken together, our results depict a silent synapse-mediated mechanism through which key supraspinal neural circuits that regulate pain sensitivity are remodeled to induce allodynia and hyperalgesia.
Robust sex difference among humans regarding psychiatry- and pain-related behaviors is being researched; however, the use of female mice in preclinical research is relatively rare due to an unchecked potential behavioral variation over the estrous cycle. In the present study, a battery of psychiatry- and pain-related behaviors are examined under physiological condition in female C57BL/6J mice over different estrous cycle phases: proestrus, estrous, metestrous, diestrous. Our behavioral results reveal that there is no significant difference over different phases of the estrous cycle in social interaction test, sucrose preference test, tail suspension test, open field test, marble burying test, novelty-suppressed feeding test, Hargreaves thermal pain test, and Von Frey mechanical pain test. These findings implicate those psychiatry- and pain-related behaviors in normal female C57BL/6J mice appear to be relatively consistent throughout the estrous cycle; the estrous cycle might not be a main contributor to female C57BL/6J mice’s variability of behaviors.
Long-term limb nerve injury often leads to mirror-image pain (MIP), an abnormal pain sensation in the limb contralateral to the injury. Although it is clear that MIP is mediated in part by central nociception processing, the underlying mechanisms remain poorly understood. The anterior cingulate cortex (ACC) is a key brain region that receives relayed peripheral nociceptive information from the contralateral limb. In this study, we induced MIP in male mice, in which a unilateral chronic constrictive injury of the sciatic nerve (CCI) induced a decreased nociceptive threshold in both hind limbs and an increased number of c-Fos-expressing neurons in the ACC both contralateral and ipsilateral to the injured limb. Using viral-mediated projection mapping, we observed that a portion of ACC neurons formed monosynaptic connections with contralateral ACC neurons. Furthermore, the number of cross-callosal projection ACC neurons that exhibited c-Fos signal was increased in MIP-expressing mice, suggesting enhanced transmission between ACC neurons of the two hemispheres. Moreover, selective inhibition of the cross-callosal projection ACC neurons contralateral to the injured limb normalized the nociceptive sensation of the uninjured limb without affecting the increased nociceptive sensation of the injured limb in CCI mice. In contrast, inhibition of the non-cross-callosal projection ACC neurons contralateral to the injury normalized the nociceptive sensation of the injured limb without affecting the MIP exhibited in the uninjured limb. These results reveal a circuit mechanism, namely, the cross-callosal projection of ACC between two hemispheres, that contributes to MIP and possibly other forms of contralateral migration of pain sensation.SIGNIFICANCE STATEMENT Mirror-image pain (MIP) refers to the increased pain sensitivity of the contralateral body part in patients with chronic pain. This pathology requires central processing, yet the mechanisms are less known. Here, we demonstrate that the cross-callosal projection neurons in the anterior cingulate cortex (ACC) contralateral to the injury contribute to MIP exhibited in the uninjured limb, but do not affect nociceptive sensation of the injured limb. In contrast, the non-cross-callosal projection neurons in the ACC contralateral to the injury contribute to nociceptive sensation of the injured limb, but do not affect MIP exhibited in the uninjured limb. Our study depicts a novel cross-callosal projection of ACC that contributes to MIP, providing a central mechanism for MIP in chronic pain state.
Our recent study demonstrated the critical role of the mesolimbic dopamine (DA) circuit and its brain-derived neurotropic factor (BDNF) signaling in mediating neuropathic pain. The present study aims to investigate the functional role of GABAergic inputs from the lateral hypothalamus (LH) to the ventral tegmental area (VTA; LHGABA→VTA) in regulating the mesolimbic DA circuit and its BDNF signaling underlying physiological and pathologic pain. We demonstrated that optogenetic manipulation of the LHGABA→VTA projection bidirectionally regulated pain sensation in naive male mice. Optogenetic inhibition of this projection generated an analgesic effect in mice with pathologic pain induced by chronic constrictive injury (CCI) of the sciatic nerve and persistent inflammatory pain by complete Freund's adjuvant (CFA). Trans-synaptic viral tracing revealed a monosynaptic connection between LH GABAergic neurons and VTA GABAergic neurons. Functionally, in vivo calcium/neurotransmitter imaging showed an increased DA neuronal activity, decreased GABAergic neuronal activity in the VTA, and increased dopamine release in the NAc, in response to optogenetic activation of the LHGABA→VTA projection. Furthermore, repeated activation of the LHGABA→VTA projection was sufficient to increase the expression of mesolimbic BDNF protein, an effect seen in mice with neuropathic pain. Inhibition of this circuit induced a decrease in mesolimbic BDNF expression in CCI mice. Interestingly, the pain behaviors induced by activation of the LHGABA→VTA projection could be prevented by pretreatment with intra-NAc administration of ANA-12, a TrkB receptor antagonist. These results demonstrated that LHGABA→VTA projection regulated pain sensation by targeting local GABAergic interneurons to disinhibit the mesolimbic DA circuit and regulating accumbal BDNF release.SIGNIFICANCE STATEMENT The mesolimbic dopamine (DA) system and its brain-derived neurotropic factor (BDNF) signaling have been implicated in pain regulation, however, underlying mechanisms remain poorly understood. The lateral hypothalamus (LH) sends different afferent fibers into and strongly influences the function of mesolimbic DA system. Here, utilizing cell type- and projection-specific viral tracing, optogenetics, in vivo calcium and neurotransmitter imaging, our current study identified the LHGABA→VTA projection as a novel neural circuit for pain regulation, possibly by targeting the VTA GABA-ergic neurons to disinhibit mesolimbic pathway-specific DA release and BDNF signaling. This study provides a better understanding of the role of the LH and mesolimbic DA system in physiological and pathological pain.
The existence of free metallic particle poses a serious threat to the oil insulation in power transformer. And ungrounded conductors in a transformer is generally covered by solid dielectrics, e.g. insulation paper. The introduction of insulation paper will change the charged performance of metallic particle, so its motion behaviours and partial discharge (PD) characteristics will be different from the case with bare electrodes. In order to clarify these, the circulation flow device of transformer oil was built. The movement behaviours of metallic particles with a diameter of 150μm was recorded by the high-speed camera. It is shown that the particles moved with oil flow in the horizontal direction while moving up-and-down in the vertical direction and colliding with electrodes. When electrodes were paper-covered, the particles would temporarily settle on the paper-covered surface. The landing-point spacing and time intervals of collision were longer than those for the bare electrodes. In addition, PD experiments of free metallic particles were carried out, and the PD characteristic parameters were extracted. It is found that when the electrodes were covered by insulation paper, partial discharge inception voltages (PDIV) became higher and the discharge magnitude and frequency decreased. The discharge mainly occurred around 45° and 160°. Finally, the influence of particle motion on PD characteristics were discussed.
Abstract Both peripheral and central CRF systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label mPFCCRF-NAcS circuit and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depicted its role in regulation of pain sensation. The current study found that the CRF signaling in the NAcS, but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRFneurons monosynaptically connected with the NAcS neurons. Chronic pain increased the release of CRF into NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF→NAcS circuit and provide a potential new therapeutic target for chronic pain.
Abstract Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify dramatic baseline sex differences in expression of long noncoding RNAs (lncRNAs) in human postmortem brain tissue that are profoundly lost in depression. One such lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and upregulated in several cortical regions of depressed females but not males. We found that virally-expressing FEDORA selectively either in neurons or in oligodendrocytes of prefrontal cortex promoted depression-like behavioral abnormalities in female mice only, changes associated with cell-type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic significance for depressed women. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.