BACKGROUND Cerebral palsy (CP) is a physical disability that affects movement and posture. Approximately 17 million people worldwide and 34,000 people in Australia are living with CP. In clinical and kinematic research, goniometers and inclinometers are the most commonly used clinical tools to measure joint angles and positions in children with CP. OBJECTIVE This paper presents collaborative research between the School of Electrical Engineering, Computing and Mathematical Sciences at Curtin University and a team of clinicians in a multicenter randomized controlled trial involving children with CP. This study aims to develop a digital solution for mass data collection using inertial measurement units (IMUs) and the application of machine learning (ML) to classify the movement features associated with CP to determine the effectiveness of therapy. The results were calculated without the need to measure Euler, quaternion, and joint measurement calculation, reducing the time required to classify the data. METHODS Custom IMUs were developed to record the usual wrist movements of participants in 2 age groups. The first age group consisted of participants approaching 3 years of age, and the second age group consisted of participants approaching 15 years of age. Both groups consisted of participants with and without CP. The IMU data were used to calculate the joint angle of the wrist movement and determine the range of motion. A total of 9 different ML algorithms were used to classify the movement features associated with CP. This classification can also confirm if the current treatment (in this case, the use of wrist extension) is effective. RESULTS Upon completion of the project, the wrist joint angle was successfully calculated and validated against Vicon motion capture. In addition, the CP movement was classified as a feature using ML on raw IMU data. The Random Forrest algorithm achieved the highest accuracy of 87.75% for the age range approaching 15 years, and C4.5 decision tree achieved the highest accuracy of 89.39% for the age range approaching 3 years. CONCLUSIONS Anecdotal feedback from Minimising Impairment Trial researchers was positive about the potential for IMUs to contribute accurate data about active range of motion, especially in children, for whom goniometric methods are challenging. There may also be potential to use IMUs for continued monitoring of hand movements throughout the day. CLINICALTRIAL Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12614001276640, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367398; ANZCTR ACTRN12614001275651, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367422
In hospitals, timely interventions can prevent avoidable clinical deterioration. Early recognition of deterioration is vital to stopping further decline. Measuring the way patients position themselves in bed and change their positions may signal when further assessment is necessary. While inertial measurement units (IMUs) have been used in health research, their use inside hospitals has been limited. This study explores the use of IMUs with machine learning to continuously capture, classify and visualise patient positions in hospital beds. The participants attended a data collection session in a simulated hospital bedspace and were asked to adopt nine positions. Movement data were captured using five IMU Xsens DOTs attached to the forehead, wrists and ankles. Support Vector Machine (SVM) and K-Nearest Neighbours classifiers were trained using five different combinations of sensors (e.g., right wrist only, right and left wrist) to determine body positions. Data from 30 participants were analysed. The highest accuracy (87.7%) was achieved by SVM using forehead and wrist sensors. Adding data from ankle sensors reduced the accuracy. To preserve patient privacy in a hospital setting, a 3D visualisation was developed in Unity, offering a non-identifiable representation of patient positions. This system could help clinicians monitor changes in position which may signal clinical deterioration.
In this paper, we introduce the Secured Real-Time Machine Communication Protocol (SRMCP), a novel industrial communication protocol designed to address the increasing demand for security and performance in Industry 4.0 environments. SRMCP integrates post-quantum cryptographic techniques, including the Kyber Key Encapsulation Mechanism (Kyber-KEM) and AES-GCM encryption, to ensure robust protection against both current and future cryptographic threats. We also present an innovative “Port Hopping” mechanism inspired by frequency hopping, enhancing security by distributing communication across multiple channels. Comparative performance analysis was conducted with widely-used protocols such as ModBus and the OPC UA, focusing on key metrics such as connection, reading, and writing times across local and remote networks. Results demonstrate that SRMCP outperforms ModBus in reading and writing operations while offering enhanced security, although it has a higher connection time due to its dual-layer encryption. The OPC UA, while secure, lags significantly in performance, making it less suitable for real-time applications. The findings suggest that SRMCP is a viable solution for secure and efficient machine communication in modern industrial settings, particularly where quantum-safe security is a concern.
Cerebral palsy (CP) is a common reason for human motor ability limitations caused before birth, through infancy or early childhood. Poor head control is one of the most important problems in children with level IV CP and level V CP, which can affect many aspects of children's lives. The current visual assessment method for measuring head control ability and cervical range of motion (CROM) lacks accuracy and reliability. In this paper, a HeadUp system that is based on a low-cost, 9-axis, inertial measurement unit (IMU) is proposed to capture and evaluate the head control ability for children with CP. The proposed system wirelessly measures CROM in frontal, sagittal, and transverse planes during ordinary life activities. The system is designed to provide real-time, bidirectional communication with an Euler-based, sensor fusion algorithm (SFA) to estimate the head orientation and its control ability tracking. The experimental results for the proposed SFA show high accuracy in noise reduction with faster system response. The system is clinically tested on five typically developing children and five children with CP (age range: 2-5 years). The proposed HeadUp system can be implemented as a head control trainer in an entertaining way to motivate the child with CP to keep their head up.
Personal protective equipment (PPE) is an essential key factor in standardizing safety within the workplace. Harsh working environments with long working hours can cause stress on the human body that may lead to musculoskeletal disorder (MSD). MSD refers to injuries that impact the muscles, nerves, joints, and many other human body areas. Most work-related MSD results from hazardous manual tasks involving repetitive, sustained force, or repetitive movements in awkward postures. This paper presents collaborative research from the School of Electrical Engineering and School of Allied Health at Curtin University. The main objective was to develop a framework for posture correction exercises for workers in hostile environments, utilizing inertial measurement units (IMU). The developed system uses IMUs to record the head, back, and pelvis movements of a healthy participant without MSD and determine the range of motion of each joint. A simulation was developed to analyze the participant's posture to determine whether the posture present would pose an increased risk of MSD with limits to a range of movement set based on the literature. When compared to measurements made by a goniometer, the body movement recorded 94% accuracy and the wrist movement recorded 96% accuracy.
Gesture recognition is a mechanism by which a system recognizes an expressive and purposeful action made by a user’s body. Hand-gesture recognition (HGR) is a staple piece of gesture-recognition literature and has been keenly researched over the past 40 years. Over this time, HGR solutions have varied in medium, method, and application. Modern developments in the areas of machine perception have seen the rise of single-camera, skeletal model, hand-gesture identification algorithms, such as media pipe hands (MPH). This paper evaluates the applicability of these modern HGR algorithms within the context of alternative control. Specifically, this is achieved through the development of an HGR-based alternative-control system capable of controlling of a quad-rotor drone. The technical importance of this paper stems from the results produced during the novel and clinically sound evaluation of MPH, alongside the investigatory framework used to develop the final HGR algorithm. The evaluation of MPH highlighted the Z-axis instability of its modelling system which reduced the landmark accuracy of its output from 86.7% to 41.5%. The selection of an appropriate classifier complimented the computationally lightweight nature of MPH whilst compensating for its instability, achieving a classification accuracy of 96.25% for eight single-hand static gestures. The success of the developed HGR algorithm ensured that the proposed alternative-control system could facilitate intuitive, computationally inexpensive, and repeatable drone control without requiring specialised equipment.
Cerebral palsy (CP) is a physical disability that affects movement and posture. Approximately 17 million people worldwide and 34,000 people in Australia are living with CP. In clinical and kinematic research, goniometers and inclinometers are the most commonly used clinical tools to measure joint angles and positions in children with CP.This paper presents collaborative research between the School of Electrical Engineering, Computing and Mathematical Sciences at Curtin University and a team of clinicians in a multicenter randomized controlled trial involving children with CP. This study aims to develop a digital solution for mass data collection using inertial measurement units (IMUs) and the application of machine learning (ML) to classify the movement features associated with CP to determine the effectiveness of therapy. The results were calculated without the need to measure Euler, quaternion, and joint measurement calculation, reducing the time required to classify the data.Custom IMUs were developed to record the usual wrist movements of participants in 2 age groups. The first age group consisted of participants approaching 3 years of age, and the second age group consisted of participants approaching 15 years of age. Both groups consisted of participants with and without CP. The IMU data were used to calculate the joint angle of the wrist movement and determine the range of motion. A total of 9 different ML algorithms were used to classify the movement features associated with CP. This classification can also confirm if the current treatment (in this case, the use of wrist extension) is effective.Upon completion of the project, the wrist joint angle was successfully calculated and validated against Vicon motion capture. In addition, the CP movement was classified as a feature using ML on raw IMU data. The Random Forrest algorithm achieved the highest accuracy of 87.75% for the age range approaching 15 years, and C4.5 decision tree achieved the highest accuracy of 89.39% for the age range approaching 3 years.Anecdotal feedback from Minimising Impairment Trial researchers was positive about the potential for IMUs to contribute accurate data about active range of motion, especially in children, for whom goniometric methods are challenging. There may also be potential to use IMUs for continued monitoring of hand movements throughout the day.Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12614001276640, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367398; ANZCTR ACTRN12614001275651, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367422.