West Nile virus (WNV) is a mosquito-borne flavivirus that can cause severe neurological disease in humans, for which there is no treatment or vaccine. From 2009 to 2018, California has reported more human disease cases than any other state in the United States. We sought to identify smaller geographic areas within the 10 California counties with the highest number of WNV cases that accounted for disproportionately large numbers of human cases from 2009 to 2018. Eleven areas, consisting of groups of high-burden ZIP codes, were identified in nine counties within southern California and California's Central Valley. Despite containing only 2% of California's area and 17% of the state's population, these high-burden ZIP codes accounted for 44% of WNV cases reported and had a mean annual incidence that was 2.4 times the annual state incidence. Focusing mosquito control and public education efforts in these areas would lower WNV disease burden.
West Nile virus (WNV) is an arthropod-borne virus (arbovirus) in the family Flaviviridae and is the leading cause of arboviral disease in the United States. An estimated 80% of WNV infections are asymptomatic. Most symptomatic persons develop an acute systemic febrile illness that often includes headache, myalgia, arthralgia, rash, or gastrointestinal symptoms. Less than 1% of infected persons develop neuroinvasive disease, which typically presents as encephalitis, meningitis, or acute flaccid paralysis.1999-2008.WNV disease is a nationally notifiable disease with standardized case definitions. State and metropolitan heath departments report cases to CDC through ArboNET, an electronic passive surveillance system. Variables collected include patient age, sex, race, county and state of residence, date of illness onset, clinical syndrome, and outcome of illness.During 1999-2008, a total of 28,961 confirmed and probable cases of WNV disease, including 11,822 (41%) WNV neuroinvasive disease cases, were reported to CDC from 47 states and the District of Columbia. No cases were reported from Alaska, Hawaii, Maine, or any U.S. territories. A total of 93% of all WNV patients had illness onset during July-September. The national incidence of WNV neuroinvasive disease peaked in 2002 (1.02 cases per 100,000 population) and was stable during 2004-2007 (mean annual incidence: 0.44; range: 0.39-0.50). In 2008, the incidence was 0.23 per 100,000 population, compared with 0.41 in 2007 and 0.50 in 2006. During 1999-2008, the highest incidence of neuroinvasive disease occurred in West North Central and Mountain states. Neuroinvasive disease incidence increased with increasing age, with the highest incidence (1.35 cases per 100,000 population) occurring among persons aged >or=70 years. The hospitalization rate and case-fatality ratio increased with increasing age among persons with neuroinvasive disease.The stability in reported incidence of neuroinvasive disease during 2004-2007 might represent an endemic level of WNV transmission. Whether the incidence reported in 2008 represents a decrease that will continue is unknown; variations in vectors, avian amplifying hosts, human activity, and environmental factors make predicting future WNV transmission levels difficult.Surveillance of WNV disease is important for detecting and monitoring seasonal epidemics and targeting prevention and control activities. Public health education programs should focus on older persons, who are at increased risk for neurologic disease and poor clinical outcomes. In the absence of an effective human vaccine, WNV disease prevention depends on community-level mosquito control and household and personal protection measures.
To determine the extent of postdiagnosis counseling and to characterize behavior before and after diagnosis of hepatitis C infection.We interviewed 133 persons diagnosed with hepatitis C in Wyoming from 1999 to 2001.Approximately two thirds of cases received counseling at the time of diagnosis. Older and symptomatic patients were more likely to receive counseling. Counseling was significantly associated with increases in condom use, wound covering, and hepatitis A and hepatitis B vaccination, but not with changes in addictive behaviors.Counseling was an effective strategy for promoting several desirable behavior changes among persons with hepatitis C infection.
Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States (1). Other arboviruses, including La Crosse, Jamestown Canyon, Powassan, eastern equine encephalitis, and St. Louis encephalitis viruses, cause sporadic disease and occasional outbreaks. This report summarizes surveillance data for nationally notifiable domestic arboviruses reported to CDC for 2019. For 2019, 47 states and the District of Columbia (DC) reported 1,173 cases of domestic arboviral disease, including 971 (83%) WNV disease cases. Among the WNV disease cases, 633 (65%) were classified as neuroinvasive disease, for a national incidence of 0.19 cases per 100,000 population, 53% lower than the median annual incidence during 2009-2018. More Powassan and eastern equine encephalitis virus disease cases were reported in 2019 than in any previous year. Health care providers should consider arboviral infections in patients with aseptic meningitis or encephalitis, perform recommended diagnostic testing, and promptly report cases to public health authorities. Because arboviral diseases continue to cause serious illness, and annual incidence of individual viruses continues to vary with sporadic outbreaks, maintaining surveillance is important in directing prevention activities. Prevention depends on community and household efforts to reduce vector populations and personal protective measures to prevent mosquito and tick bites such as use of Environmental Protection Agency-registered insect repellent and wearing protective clothing.*,†.
Although West Nile virus (WNV) disease has occurred predominantly among adults in the United States, children are also susceptible. Epidemiological data describing WNV disease in children are limited.We described the epidemiological features of WNV disease among children (<18 years of age) reported to the Centers for Disease Control and Prevention from 1999 through 2007 and compared features of pediatric and adult West Nile neuroinvasive disease (WNND).Of 1478 pediatric WNV cases reported from 1999 through 2007, 443 (30%) were classified as WNND, 1009 (68%) were classified as West Nile fever, and 26 (2%) were of unknown clinical presentation. Three WNND cases were fatal. The vast majority of reported case subjects (92%) had onset of illness between July and September. Children accounted for only 4% of all of the WNND case subjects reported from 1999 to 2007, with a median annual incidence of 0.07 case subjects per 100 000 children (range: 0.00-0.19 case subjects). In children and younger adults WNND most often manifested as meningitis, in contrast to the predominance of encephalitis among older adults with WNND. The geographic distribution and temporal trends were of pediatric and adult WNND.The epidemiological characteristics of WNV disease in children are similar to adult case subjects; however, WNND is more likely to manifest as meningitis in children than in older adults. WNV should be considered in the differential diagnosis for pediatric patients presenting with febrile illness, meningitis, encephalitis, or acute flaccid paralysis, particularly during seasonal outbreaks in endemic areas.
Dengue, chikungunya, and Zika viruses, primarily transmitted by Aedes species mosquitoes, have caused large outbreaks in the Americas, leading to travel-associated cases and local mosquito-borne transmission in the United States. We describe the epidemiology of dengue, chikungunya, and noncongenital Zika virus disease cases reported from U.S. states and territories in 2017, including 971 dengue cases, 195 chikungunya cases, and 1,118 Zika virus disease cases. Cases of all three diseases reported from the territories were reported as resulting from local mosquito-borne transmission. Cases reported from the states were primarily among travelers, with only seven locally acquired mosquito-transmitted Zika virus disease cases reported from Texas ( n = 5) and Florida ( n = 2). In the territories, most dengue cases ( n = 508, 98%) were reported from American Samoa, whereas the majority of chikungunya ( n = 39, 100%) and Zika virus disease ( n = 620, 93%) cases were reported from Puerto Rico. Temporally, the highest number of Zika virus disease cases occurred at the beginning of the year, followed by a sharp decline, mirroring decreasing case numbers across the Americas following large outbreaks in 2015 and 2016. Dengue and chikungunya cases followed a more seasonal pattern, with higher case numbers from July through September. Travelers to the United States and residents of areas with active virus transmission should be informed of both the ongoing risk from dengue, chikungunya, and Zika virus disease and personal protective measures to lower their risk of mosquito bites and to help prevent the spread of these diseases.
In the United States, West Nile virus (WNV) causes annual seasonal outbreaks that fluctuate in size and scope. There was a large multistate outbreak of WNV in 2012, with more human disease cases reported nationally than any year since 2003. We evaluated national surveillance data to determine if the higher number of WNV cases reported in 2012 was associated with changes in the epidemiology or severity of disease compared with 2004–2011. Despite an increased incidence of neuroinvasive disease in 2012, national surveillance data showed no evidence of changes in epidemiology or increased disease severity compared with the previous 8 years.
Surveillance systems for West Nile virus (WNV) combine several methods to determine the location and timing of viral amplification. The value of each surveillance method must be measured against its efficiency and costs to optimize integrated vector management and suppress WNV transmission to the human population. Here we extend previous comparisons of WNV surveillance methods by equitably comparing the most common methods after standardization on the basis of spatial sampling density and costs, and by estimating optimal levels of sampling effort for mosquito traps and sentinel chicken flocks. In general, testing for evidence of viral RNA in mosquitoes and public-reported dead birds resulted in detection of WNV approximately 2–5 weeks earlier than serological monitoring of sentinel chickens at equal spatial sampling density. For a fixed cost, testing of dead birds reported by the public was found to be the most cost effective of the methods, yielding the highest number of positive results per $1000. Increased spatial density of mosquito trapping was associated with more precise estimates of WNV infection prevalence in mosquitoes. Our findings also suggested that the most common chicken flock size of 10 birds could be reduced to six to seven without substantial reductions in timeliness or sensitivity. We conclude that a surveillance system that uses the testing of dead birds reported by the public complemented by strategically timed mosquito and chicken sampling as agency resources allow would detect viral activity efficiently in terms of effort and costs, so long as susceptible bird species that experience a high mortality rate from infection with WNV, such as corvids, are present in the area.
Background Japanese encephalitis (JE) is a mosquito-borne disease that is associated with considerable morbidity and mortality in many Asian countries. The objective of this study was to describe the impact of the JE immunization program using SA 14-14-2 JE vaccine implemented in Nepal during 2006 through 2011. A previous assessment after the initial program implementation phase described a significantly lower post-campaign JE incidence compared to expected incidence; however, the previous evaluation had limited post-campaign data for some districts. Methodology/Principal findings JE and acute encephalitis syndrome (AES) data gathered through Nepal's routine surveillance system from 2004 through 2014 were analyzed to assess the impact of the JE immunization program implemented in 31 districts. Expected incidence rates were determined by calculating the incidence of cases per 100,000 person-years in each district before the vaccination campaigns. This rate was applied to the relevant population after the vaccination campaigns, which provided the expected number of cases had the campaign not occurred. The observed incidence rate was the number of reported cases per 100,000 person-years post-campaign. Expected and observed JE and AES cases and incidence rates were compared. The post-campaign JE incidence rate of 0.7 cases per 100,000 was 78% (95% CI 76%–79%) lower than expected had no campaign occurred and an estimated 3,011 (95% CI 2,941–3,057) JE cases were prevented. The post-vaccination AES incidence of 5.5 cases per 100,000 was 59% (58%–60%) lower than the expected and an estimated 9,497 (95% CI 9,268–9,584) AES cases were prevented. Conclusions/Significance This analysis strengthens previous findings of the substantial impact of Nepal's JE immunization program using SA 14-14-2 JE vaccine.