We report on the results of 3-4 μm spectroscopy of the ultraluminous infrared galaxy (ULIRG) UGC 5101. It has a cool far-infrared color and a LINER-type optical spectrum and so, based on a view gaining some currency, would be regarded as dominated by star formation. However, we find that it has strong 3.4 μm carbonaceous dust absorption, low equivalent width 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission, and a small 3.3 μm PAH-to-far-infrared luminosity ratio. This favors an alternative scenario, in which an energetically dominant active galactic nucleus (AGN) is present behind obscuring dust. The AGN is plausibly obscured along all lines of sight (a "buried AGN") rather than merely obscured along our particular line of sight. Such buried AGNs have previously been found in thermal infrared studies of the ULIRGs IRAS 08572+3915 and IRAS F00183-7111, both classified optically as LINERs. We argue that buried AGNs can produce LINER-type optical spectra and that at least some fraction of LINER-type ULIRGs are predominantly powered by buried AGNs.
New moderate-resolution mid-infrared spectroscopy at 10 μm of 27 infrared galaxies is presented. The galaxies have been chosen from three 60-μm selected and one 12-μm selected complete flux-limited catalogues of galaxies; 17 of these sources have LIR(8–1000 μm)≥5×1011 L⊙. A high-resolution spectrum of the source Arp 299B1 is also presented. Combining these new results with previously published results, a nearly complete 60-μm selected flux-limited subsample, with LIR(8–1000 μm)≥1.6×1011 L⊙, of 25 galaxies is defined. Within this subsample, it is found that the dominant power source of infrared galaxies in the luminosity range 1.6×1011
The case for substantial far infrared ice emission in local ultraluminous infrared galaxies, expected based on the presence of mid-infrared ice absorption in their spectra and the known far infrared optical properties of ice, is still largely unsupported by direct observation owing to insufficient far infrared spectral coverage. Some marginal supportive evidence is presented here. A clear consequence of far infrared ice emission is the need to extend the range of redshifts considered for submillimeter sources. This is demonstrated via the example of HDF 850.1. The solid phase of the ISM during reionization may be dominated by ice, and this could lead to the presence of reionization sources in submillimeter source catalogs. Submillimeter sources not detected at 24 micron in the GOODS-N field are examined. Two candidate reionization sources are identified at 3.6 micron through possible Gunn-Peterson saturation in the Z band.
We present a framework for the interpretation of the far-infrared spectra of galaxies in which we have expanded the model parameters compared with previous work by varying the ionization parameter $U$, column density $N$(H), and gas density at the cloud face $n$(H$^{+}$) for a central starburst or AGN. We compare these models carried out with the $Cloudy$ spectral synthesis code to trends in line-to-total far-infrared luminosity ratios, far-infrared fine-structure line ratios, IRAS colors, and OH and H$_{2}$O column densities with trends found in the well-studied sample of ten nearby galaxies from the IRAS Bright Galaxy Sample with infrared luminosities greater than 10$^{10}$ L$_{\odot}$ and IRAS 60 micron fluxes equal to or greater than that of the nearby ULIRG Arp 220. We find that the spectral sequence extending from normal starburst-type emission line spectra to ULIRG-type absorption-dominated spectra with significant absorption from excited levels, can be best explained by simultaneously increasing the hydrogen column density, from as low as 10$^{21}$ cm$^{-2}$ to as high as 10$^{24.8}$ cm$^{-2}$ or greater, and the ionization parameter, from as low as 10$^{-4}$ to as high as 1. The starburst models best reproduce most of the sequence, while AGN models are somewhat better able to produce the high OH and H$_{2}$O column densities in Arp 220. Our results suggest that the molecular ISM in ULIRG-like, absorption-dominated systems is located close to and at least partially obscures the source of power throughout much of the far-infrared, which must be taken into account in order to properly interpret diagnostics of both their sources of power and of feedback.
We present a study of the [C II] 157.74 μm fine-structure line in a sample of 15 ultraluminous infrared (IR) galaxies (IR luminosity LIR ⩾ 1012 L☉; ULIRGs) using the Long Wavelength Spectrometer (LWS) on the Infrared Space Observatory (ISO). We confirm the observed order of magnitude deficit (compared to normal and starburst galaxies) in the strength of the [C II] line relative to the far-infrared (FIR) dust continuum emission found in our initial report, but here with a sample that is twice as large. This result suggests that the deficit is a general phenomenon affecting 4 out of 5 ULIRGs. We present an analysis using observations of generally acknowledged photodissociation region (PDR) tracers ([C II], [O I] 63 and 145 μm, and FIR continuum emission), which suggests that a high ultraviolet flux G0 incident on a moderate density n PDR could explain the deficit. However, comparisons with other ULIRG observations, including CO (1-0), [C I] (1-0), and 6.2 μm polycyclic aromatic hydrocarbon (PAH) emission, suggest that high G0/n PDRs alone cannot produce a self-consistent solution that is compatible with all of the observations. We propose that non-PDR contributions to the FIR continuum can explain the apparent [C II] deficiency. Here, unusually high G0 and/or n physical conditions in ULIRGs as compared to those in normal and starburst galaxies are not required to explain the [C II] deficit. Dust-bounded photoionization regions, which generate much of the FIR emission but do not contribute significant [C II] emission, offer one possible physical origin for this additional non-PDR component. Such environments may also contribute to the observed suppression of FIR fine-structure emission from ionized gas and PAHs, as well as the warmer FIR colors found in ULIRGs. The implications for observations at higher redshifts are also revisited.
In order to extend the US Naval Observatory (USNO) small-angle astrometric capabilities to near infrared wavelengths we have designed and manufactured a 1024 x 1024 InSb re-imaging infrared camera equipped with an array selected from the InSb ALADDIN (Advanced Large Area Detector Development in InSb) development program and broadband and narrowband 0.8 - 3.8 μm filters. Since the USNO 1.55-m telescope is optimized for observations at visible wavelengths with an oversized secondary mirror and sky baffles, the straylight rejection capabilities of the ASTROCAM Lyot stop and baffles are of critical importance for its sensitivity and flat- fielding capabilities. An Offner relay was chosen for the heart of the system and was manufactured from the same melt of aluminum alloy to ensure homologous contraction from room temperature to 77 K. A blackened cone was installed behind the undersized hole (the Lyot stop) in the Offner secondary. With low distortion, a well-sampled point spread function, and a large field of view, the system is well suited for astrometry. It is telecentric, so any defocus will not result in a change of image scale. The DSP-based electronics allow readout of the entire array with double-correlated sampling in 0.19 seconds, but shorter readout is possible with single sampling or by reading out only small numbers of subarrays. In this paper we report on the optical, mechanical, and electronic design of the system and present images and results on the sensitivity and astrometric stability obtained with the system, now operating routinely at the 1.55-m telescope with a science-grade ALADDIN array.