Template based chemical vapor deposition (CVD) is a process of effectively fabricating nanostructures such as Carbon nanotube arrays (CNT). During this process, a carbon-carrying precursor gas is used to deposit a layer of solid carbon on the surface of a template within a furnace. Template-based CVD using porous anodized aluminum oxide (AAO) membranes as the template has been applied to efficiently mass-produce CNT arrays which have shown promise for use in gene transfection applications. These AAO membranes are incredibly fragile, making them prone to cracks during handling which can compromise their performance. In order to ease handling of the CNT devices, three-dimensional (3D) printing has been applied to create a support structure for the fragile membranes. The work presented here focuses on the use of 3D printing as a means of integrating CNT arrays into nanofluidic devices, both increasing their useful application and preventing damage to the fragile arrays during handling. 3D printing allows the CNT arrays to be completely encapsulated within the fluidic device by printing a base of material before inserting the arrays. Additionally, 3D printing has been shown to create an adequate seal between the CNT arrays and the printed device without the need for additional adhesives or sealing processes. For this work, a commercially available, fused deposition modeling (FDM) 3D printer was used to print the devices out of polylactic acid (PLA) plastic. This approach has been shown to be effective and repeatable for nanofluidic device construction, while also being cost effective and less time consuming than other methods such as photolithography. Cell culture and has been demonstrated using HEK293 cells on the devices and was found to be comparable to tissue culture polystyrene.
Template-based chemical vapor deposition (TB-CVD) is a versatile technique for manufacturing carbon nanotubes (CNTs) or CNT-based devices for various applications. In this process, carbon is deposited by thermal decomposition of a carbon-based precursor gas inside the nanoscopic cylindrical pores of anodized aluminum oxide (AAO) templates to form CNTs. Experimental results show that CNT formation in templates is controlled by TB-CVD process parameters, such as time, temperature, and flow rate. However, optimization of this process is done empirically, requiring tremendous time and effort. Moreover, there is a need for a more comprehensive and low cost way to characterize the flow in the furnace in order to understand how process parameters may affect CNT formation. In this report, we describe the development of four, 3D numerical models (73 < Re < 1100), each varying in complexity, to elucidate the thermofluid behavior in the TB-CVD process. Using computational fluid dynamic (CFD) commercial codes, the four models are compared to determine how the presence of the template and boat, composition of the precursor gas, and consumption of species at the template surface affect the temperature profiles, velocity fields, mixed convection, and strength of circulations in the system. The benefits and shortcomings of each model, as well as a comparison of model accuracy and computational time, are presented. Due to limited data, simulation results are validated by experiments and visual observations of the flow structure whenever possible. Decent agreement between experimental data and simulation supports the reliability of the simulation.
Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.
Abstract Carbon nanopipettes (CNPs) are integrated devices combining a nanometer‐size carbon tip with a glass pipette. The carbon tip is produced by catalytic CVD. In this paper, it is demonstrated that the structure of the CNPs can be controlled by varying the synthesis parameters. Increased carbon graphitization is observed as the synthesis temperature increases from 890 °C to 950 °C. A similar effect is achieved by lowering the carbon precursor (methane) concentration from 60% to 20%. Changes in the amount of catalyst do not have a significant effect on the carbon graphitization. At the same time, CNPs with relatively large amounts of hydrogen bonds on the surface are obtained by using a high methane concentration. This finding is used to facilitate the functionalization of the CNPs with gold nanoparticles.
An aerosol jet printing enabled dual-function biosensor for the sensitive detection of pathogens using SARS-CoV-2 RNA as an example has been developed. A CRISPR-Cas13: guide-RNA complex is activated in the presence of a target RNA, leading to the collateral trans-cleavage of ssRNA probes that contain a horseradish peroxidase (HRP) tag. This, in turn, catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HRP, resulting in a color change and electrochemical signal change. The colorimetric and electrochemical sensing protocol does not require complicated target amplification and probe immobilization and exhibits a detection sensitivity in the femtomolar range. Additionally, our biosensor demonstrates a wide dynamic range of 5 orders of magnitude. This low-cost aerosol inkjet printing technique allows for an amplification-free and integrated dual-function biosensor platform, which operates at physiological temperature and is designed for simple, rapid, and accurate point-of-care (POC) diagnostics in either low-resource settings or hospitals.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a widespread and potent calcium-mobilizing messenger that is highly unusual in activating calcium channels located on acidic stores. However, the molecular identity of the target protein is unclear. In this study, we show that the previously uncharacterized human two-pore channels (TPC1 and TPC2) are endolysosomal proteins, that NAADP-mediated calcium signals are enhanced by overexpression of TPC1 and attenuated after knockdown of TPC1, and that mutation of a single highly conserved residue within a putative pore region abrogated calcium release by NAADP. Thus, TPC1 is critical for NAADP action and is likely the long sought after target channel for NAADP.
Carbon nanotubes (CNTs) hold significant promise in the fields of efficient drug delivery and bio-sensing for disease treatment because of their unique properties. In our lab, single and arrayed CNT-tipped devices are manufactured by deposition of carbon on the heated surfaces of templates using chemical vapor deposition (Template-Based Chemical Vapor Deposition, TB-CVD). Experimental results show CNT formation in templates is controlled by TB-CVD process parameters such as flow rate and temperature. However, there is a need for a more comprehensive and low cost way to characterize the flow in the furnace in order to understand how process parameters may affect CNT formation. In this report, 2D and 3D numerical models with Quadrilateral grids were developed using computational fluid dynamic (CFD) commercial codes. Velocity patterns and flow regimes in the tube were compared with experimental data. In addition, statistical techniques were employed to study temperature profiles and velocity patterns in the furnace as a function of flow rate. The outcome of this work will help to elucidate the TB-CVD process and facilitate the efficient manufacture of carbon nanostructures from a variety of templates. The results are broadly applicable to the manufacturing of CNTs and other nanostructured devices used in energy and biomedical fields, including CNT-based devices used in biological applications.
This paper presents the fabrication of microscale to nanoscale nozzle and patterning by means of electrostatic field induced drop-on-demand inkjet printing system. Typically using the nanoscale nozzle we could eject nanoscale droplets and show feasibility to form patterns ranging from micro scale to nano scale on large area substrates at high speed.