Abstract An interleukin (IL)-4-containing tumor environment is reported to be beneficial for immune clearance of tumor cells in vivo; however, the effect of IL-4 on the effector CD8+ T cells contributing to tumor clearance is not well defined. We have used the immunogenic HLA-CW3-expressing P815 (P.CW3) mastocytoma and investigated whether IL-4 expression by the tumor affects tumor clearance and, if so, whether it alters the tumor-induced Vβ10+ CD8+ T-cell response. P.CW3 were stably transfected with IL-4 or the empty control vector, and independent cell lines were injected i.p. into syngeneic DBA/2 mice. After apparent clearance of primary tumors over 12 to 15 days, secondary tumors arose that lacked surface expression and H-2-restricted antigen presentation of CW3 in part due to the loss of the HLA-CW3 expression cassette. Surprisingly, mice that received IL-4-producing tumor cells showed delayed primary tumor clearance and were significantly more prone to develop secondary tumors compared with mice receiving control tumor cells. Tumor clearance was dependent on CD8+ T cells. The IL-4-secreting P.CW3 tumor cells led to markedly higher mRNA expression of IL-4 and granzyme A and B but no differences in IFN-γ and IL-2 production, cell proliferation, or ex vivo CTL activity in primary Vβ10+ CD8+ T cells when compared with the control tumor cells. We concluded that tumor-derived IL-4 selectively changed the quality of the tumor-induced CD8+ T-cell response and resulted in unexpected negative effects on tumor clearance. These data bring into question the delivery of IL-4 to the tumor environment for improving tumor immunotherapy. (Cancer Res 2006; 66(1): 571-80)
Growing human cells in culture for research is one thing, but the isolation and culture of high-quality cells that will be re-injected back into the donor is quite another. Manipulation and expansion of cells in a clinical setting carries its own unique requirements and complications. Growth and survival needs to be optimized and quality control is paramount. Often only a single opportunity for successful treatment is possible, so chances of success need to be maximized in all respects, including high-yield isolation of good quality cells from patients, cell culture conditions, cell characterization, and reperfusion back into patients. During this webinar, we will broadly examine the process of immunotherapy as well as examine in more detail some of the most critical steps along the pathway to generating a therapeutic dose of modified cells.
Abstract Control of the intracellular levels of phosphatidylinositol-(3, 4, 5)-trisphosphate by PI3K and phosphatase and tensin homolog (PTEN) is essential for B cell development and differentiation. Deletion of the PI3K catalytic subunit p110δ leads to a severe reduction in B1 and marginal zone (MZ) B cells, whereas deletion of PTEN results in their expansion. We have examined the relationship between these two molecules by generating mice with a B cell-specific deletion of PTEN (PTENB) and a concurrent germline deletion of p110δ. The expanded B1 cell population of PTENB mice was reduced to normal levels in PTENB/p110δ mutant mice, indicating a critical role for the p110δ isoform in the expansion of B1 cells. However, numbers of MZ B cells in the PTENB/p110δ mutants was intermediate between wild-type and PTENB-deficient mice, suggesting an additional role for other PI3K catalytic isoforms in MZ differentiation. Furthermore, the defective class switch recombination in PTENB B cells was only partially reversed in PTENB/p110δ double mutant B cells. These results demonstrate an epistatic relationship between p110δ and PTEN. In addition, they also suggest that additional PI3K catalytic subunits contribute to B cell development and function.
Abstract Exposure to IL-4 during activation of naive murine CD8+ T cells leads to generation of IL-4-producing effector cells with reduced surface CD8, low perforin, granzyme B and granzyme C mRNA, and poor cytolytic function. We show in this study that maximal development of these cells depended on exposure to IL-4 for the first 5 days of activation. Although IL-4 was not required at later times, CD8 T cell clones continued to lose surface CD8 expression with prolonged culture, suggesting commitment to the CD8low phenotype. This state was reversible in early differentiation. When single CD8low cells from 4-day cultures were cultured without IL-4, 65% gave rise to clones that partly or wholly comprised CD8high cells; the proportion of reverted clones was reduced or increased when the cells were cloned in the presence of IL-4 or anti-IL-4 Ab, respectively. CD8 expression positively correlated with perforin and granzyme A, B, and C mRNA, and negatively correlated with IL-4 mRNA levels among these clones. By contrast, most CD8low cells isolated at later time points maintained their phenotype, produced IL-4, and exhibited poor cytolytic function after many weeks in the absence of exogenous IL-4. We conclude that IL-4-dependent down-regulation of CD8 is associated with progressive differentiation and commitment to yield IL-4-producing cells with little cytolytic activity. These data suggest that the CD4−CD8− cells identified in some disease states may be the product of a previously unrecognized pathway of effector differentiation from conventional CD8+ T cells.
Abstract Thymocytes are tested for productive rearrangement of the tcrb locus by expression of a pre-TCR in a process termed β-selection, which requires both Notch1 and CXCR4 signaling. It has been shown that activation of the GTPase Ras allows thymocytes to proliferate and differentiate in the absence of a Pre-TCR; the direct targets of Ras at this checkpoint have not been identified, however. Mice with a mutant allele of p110γ unable to bind active Ras revealed that CXCR4-mediated PI3K activation is Ras dependent. The Ras–p110γ interaction was necessary for efficient β-selection–promoted proliferation but was dispensable for the survival or differentiation of thymocytes. Uncoupling Ras from p110γ provides unambiguous identification of a Ras interaction required for thymic β-selection.